

ERGEBNISSE FÜR DIE VERBANDSGEMEINDEN

"INTEGRIERTES KLIMASCHUTZ- UND ENERGIEKONZEPT FÜR DEN LANDKREIS SÜDWESTPFALZ EINSCHLIEßLICH ALLER KREISANGEHÖRIGEN VERBANDS- UND ORTSGEMEINDEN"

Birkenfeld, Juni 2013

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Gefördert durch:

aufgrund eines Beschlusses des Deutschen Bundestages

Förderung:

Das diesem Bericht zugrunde liegende Projekt wurde mit Mitteln des Bundesministeriums für Umwelt, Naturschutz und Reaktorsicherheit im Förderbereich der nationalen Klimaschutzinitiative unter den Förderkennzeichen 03KS2348 gefördert.

Impressum

Herausgeber:

Kreisverwaltung Südwestpfalz Unterer Sommerwaldweg 40-42 66953 Pirmasens

Kontakt:

Manfred Seibel Tel.: 06331 / 809-473 Fax: 06331 / 809-8473

E-Mail: m.seibel@lksuedwestpfalz.de

Projektleitung:

Hans-Jörg Duppré Manfred Seibel

Erstellung Integriertes Klimaschutzund Energiekonzept:

Hochschule Trier Umwelt-Campus Birkenfeld Postfach 1380 55761 Birkenfeld

Tel. 06782 /17-1221

E-Mail: ifas@umwelt-campus.de

Institutsleiter:

Prof. Dr. Peter Heck Geschäftsführender Direktor IfaS

Projektleitung:

Thomas Anton

Projektmanagement:

Jens Frank, Pascal Thome

Erstellung Öffentlichkeitskonzept:

ICLEI - Local Governments for Sustainability European Secretariat Leopoldring 3 D-79098 Freiburg

Tel: 0761 / 368 92-0

Email: iclei-europe@iclei.org

Projektleitung:

Carsten Rothballer

Inhaltsverzeichnis

1 Ve	erbandsgemeinde Dahner Felsenland	1
1.1	Energie- und Treibhausgasbilanzierung (Startbilanz)	1
1.1.1	Analyse des Gesamtenergieverbrauches und der Energieversorgung	1
1.1.1.1	Gesamtstromverbrauch und Stromerzeugung	2
1.1.1.2	Gesamtwärmeverbrauch und Wärmeerzeugung	3
1.1.1.3	Energieverbrauch im Sektor Verkehr	4
1.1.1.4	Energieverbrauch im Sektor Abfall / Abwasser	5
1.1.2	Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern	6
1.1.3	Treibhausgasemissionen der Verbandsgemeinde Dahner Felsenland	8
1.2	Energieeffizienz	9
1.3	Erneuerbarer Energien	13
1.3.1	Photovoltaikpotenzial auf Freiflächen	13
1.3.2	Solarenergiepotenzial auf Dachflächen	13
1.3.3	Windenergiepotenzial	14
1.3.4	Geothermiepotenzial	15
1.3.5	Biomassepotenzial	16
1.3.6	Wasserkraftpotenzial	16
2 Ve	erbandsgemeinde Hauenstein	17
2.1	Energie- und Treibhausgasbilanzierung (Startbilanz)	17
2.1.1	Analyse des Gesamtenergieverbrauches und der Energieversorgung	17
2.1.1.1	Gesamtstromverbrauch und Stromerzeugung	
2.1.1.2	Gesamtwärmeverbrauch und Wärmeerzeugung	19
2.1.1.3	Energieverbrauch im Sektor Verkehr	20
2.1.1.4	Energieverbrauch im Sektor Abfall / Abwasser	21
2.1.2	Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern	22
2.1.3	Treibhausgasemissionen der Verbandsgemeinde Hauenstein	24
2.2	Energieeffizienz	25
2.3	Erneuerbarer Energien	29
2.3.1	Photovoltaikpotenzial auf Freiflächen	29
2.3.2	Solarenergiepotenzial auf Dachflächen	30
2.3.3	Windenergiepotenzial	30
2.3.4	Geothermiepotenzial	31
2.3.5	Biomassepotenzial	32
2.3.6	Wasserkraftpotenzial	32
3 Ve	erbandsgemeinde Pirmasens-Land	33
3.1	Energie- und Treibhausgasbilanzierung (Startbilanz)	33
3.1.1	Analyse des Gesamtenergieverbrauches und der Energieversorgung	33
3.1.1.1	Gesamtstromverbrauch und Stromerzeugung	

3.1.1.2	Gesamtwärmeverbrauch und Wärmeerzeugung	35
3.1.1.3	Energieverbrauch im Sektor Verkehr	36
3.1.1.4	Energieverbrauch im Sektor Abfall / Abwasser	37
3.1.2	Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern	38
3.1.3	Treibhausgasemissionen der Verbandsgemeinde Pirmasens-Land	40
3.2	Energieeffizienz	41
3.3	Erneuerbarer Energien	45
3.3.1	Photovoltaikpotenzial auf Freiflächen	45
3.3.2	Solarenergiepotenziale auf Dachflächen	45
3.3.3	Windenergiepotenzial	45
3.3.4	Geothermiepotenzial	46
3.3.5	Biomassepotenzial	47
3.3.6	Wasserkraftpotenzial	47
4 Ve	erbandsgemeinde Rodalben	48
4.1	Energie- und Treibhausgasbilanzierung (Startbilanz)	48
4.1.1	Analyse des Gesamtenergieverbrauches und der Energieversorgung	48
4.1.1.1	Gesamtstromverbrauch und Stromerzeugung	49
4.1.1.2	Gesamtwärmeverbrauch und Wärmeerzeugung	50
4.1.1.3	Energieverbrauch im Sektor Verkehr	51
4.1.1.4	Energieverbrauch im Sektor Abfall / Abwasser	52
4.1.2	Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern	53
4.1.3	Treibhausgasemissionen der Verbandsgemeinde Rodalben	55
4.2	Energieeffizienz	56
4.3	Erneuerbarer Energien	60
4.3.1	Photovoltaikpotenzial auf Freiflächen	60
4.3.2	Solarenergiepotenzial auf Dachflächen	61
4.3.3	Windenergiepotenzial	
4.3.4	Geothermiepotenzial	62
4.3.5	Biomassepotenzial	63
4.3.6	Wasserkraftpotenzial	63
5 Ve	erbandsgemeinde Thaleischweiler-Fröschen	64
5.1	Energie- und Treibhausgasbilanzierung (Startbilanz)	64
5.1.1	Analyse des Gesamtenergieverbrauches und der Energieversorgung	64
5.1.1.1	Gesamtstromverbrauch und Stromerzeugung	65
5.1.1.2	Gesamtwärmeverbrauch und Wärmeerzeugung	66
5.1.1.3	Energieverbrauch im Sektor Verkehr	67
5.1.1.4	Energieverbrauch im Sektor Abfall / Abwasser	68
5.1.2	Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern	69
5.1.3	Treibhausgasemissionen der Verbandsgemeinde Thaleischweiler-Fröschen	
5.2	Energieeffizienz	
5.3	Erneuerbarer Energien	
5.5	Lineacibalor Energion	, 0

5.3.1	Photovoltaikpotenzial auf Freiflächen	76
5.3.2	Solarenergiepotenzial auf Dachflächen	77
5.3.3	Windenergiepotenzial	77
5.3.4	Geothermiepotenzial	78
5.3.5	Biomassepotenzial	79
5.3.6	Wasserkraftpotenzial	79
6 Ve	erbandsgemeinde Waldfischbach-Burgalben	80
6.1	Energie- und Treibhausgasbilanzierung (Startbilanz)	80
6.1.1	Analyse des Gesamtenergieverbrauches und der Energieversorgung	80
6.1.1.1	Gesamtstromverbrauch und Stromerzeugung	81
6.1.1.2	Gesamtwärmeverbrauch und Wärmeerzeugung	82
6.1.1.3	Energieverbrauch im Sektor Verkehr	83
6.1.1.4	Energieverbrauch im Sektor Abfall / Abwasser	84
6.1.2	Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern	85
6.1.3	Treibhausgasemissionen der Verbandsgemeinde Waldfischbach-Burgalben	87
6.2	Energieeffizienz	88
6.3	Erneuerbarer Energien	92
6.3.1	Photovoltaikpotenzial auf Freiflächen	92
6.3.2	Solarenergiepotenziale auf Dachflächen	93
6.3.3	Windenergiepotenzial	93
6.3.4	Geothermiepotenzial	94
6.3.5	Biomassepotenzial	94
6.3.6	Wasserkraftpotenzial	95
7 Ve	erbandsgemeinde Wallhalben	96
7.1	Energie- und Treibhausgasbilanzierung (Startbilanz)	96
7.1.1	Analyse des Gesamtenergieverbrauches und der Energieversorgung	96
7.1.1.1	Gesamtstromverbrauch und Stromerzeugung	
7.1.1.2	Gesamtwärmeverbrauch und Wärmeerzeugung	98
7.1.1.3	Energieverbrauch im Sektor Verkehr	99
7.1.1.4	Energieverbrauch im Sektor Abfall / Abwasser	100
7.1.1.5	Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern	101
7.1.2	Treibhausgasemissionen der Verbandsgemeinde Wallhalben	103
7.2	Energieeffizienz	104
7.3	Erneuerbarer Energien	106
7.3.1	Photovoltaikpotenzial auf Freiflächen	106
7.3.2	Solarenergiepotenzial auf Dachflächen	107
7.3.3	Windenergiepotenzial	107
7.3.4	Geothermiepotenzial	108
7.3.5	Biomassepotenzial	109
7.3.6	Wasserkraftpotenzial	109

8 Ve	erbandsgemeinde Zweibrücken-Land	110
8.1	Energie- und Treibhausgasbilanzierung (Startbilanz)	110
8.1.1	Analyse des Gesamtenergieverbrauches und der Energieversorgung	110
8.1.1.1	Gesamtstromverbrauch und Stromerzeugung	111
8.1.1.2	Gesamtwärmeverbrauch und Wärmeerzeugung	112
8.1.1.3	Energieverbrauch im Sektor Verkehr	113
8.1.1.4	Energieverbrauch im Sektor Abfall / Abwasser	114
8.1.2	Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern	115
8.1.3	Treibhausgasemissionen der Verbandsgemeinde Zweibrücken-Land	117
8.2	Energieeffizienz	118
8.3	Erneuerbarer Energien	122
8.3.1	Photovoltaikpotenzial auf Freiflächen	122
8.3.2	Solarenergiepotenzial auf Dachflächen	123
8.3.3	Windenergiepotenzial	123
8.3.4	Geothermiepotenzial	124
8.3.5	Biomassepotenzial	125
8.3.6	Wasserkraftpotenzial	125
9 Ta	bellenverzeichnis	VII
10 Ak	obildungsverzeichnis	XI

1 Verbandsgemeinde Dahner Felsenland

1.1 Energie- und Treibhausgasbilanzierung (Startbilanz)

Um Klimaschutzziele innerhalb eines Betrachtungsraumes quantifizieren zu können, ist es unerlässlich, die Energieversorgung, den Energieverbrauch sowie die unterschiedlichen Energieträger zu bestimmen. Die Analyse bedarf der Berücksichtigung einer fundierten Datengrundlage und muss sich darüber hinaus statistischer Berechnungen¹ bedienen, da keine vollständige Erfassung der Verbrauchs- und Produktionsdaten für die Verbandsgemeinde Dahner Felsenland vorliegt.

Die Betrachtung der Energiemengen bezieht sich im Rahmen des Konzeptes auf die Form der Endenergie (z. B. Heizöl, Holzpellets, Strom). Die verwendeten Emissionsfaktoren beziehen sich auf die relevanten Treibhausgase CO₂, CH₄ sowie N₂O und werden als CO₂-Äquivalente² (CO₂e) ausgewiesen. Die Faktoren stammen aus dem Globalen Emissions-Modell integrierter Systeme (GEMIS) in der Version 4.7³ und sind als Anhang (Erläuterung zu den Wirkungsanalysen) zur Einsicht hinterlegt. Sie beziehen sich ebenfalls auf den Endenergieverbrauch und berücksichtigen keine Vorketten z. B. aus der Anlagenproduktion oder der Brennstoffbereitstellung. Das vorliegende Konzept bezieht sich im Wesentlichen systematisch auf das Gebiet der Verbandsgemeinde. Dementsprechend ist die Energie- und Treibhausgasbilanzierung nach der Methodik einer "endenergiebasierten Territorialbilanz" aufgebaut, welche im Praxisleitfaden "Klimaschutz in Kommunen" für die Erstellung von Klimaschutzkonzepten nahegelegt wird.⁴ Die Betrachtung der Energiemengen bezieht sich vor diesem Hintergrund auf die Form der Endenergie.⁵

Im Folgenden werden die Gesamtenergieverbräuche sowie die derzeitigen Energieversorgungsstrukturen der Verbandsgemeinde Dahner Felsenland im IST-Zustand analysiert.

1.1.1 Analyse des Gesamtenergieverbrauches und der Energieversorgung

Mit dem Ziel, den Energieverbrauch und die damit einhergehenden Treibhausgasemissionen der Verbandsgemeinde im IST-Zustand abzubilden, werden an dieser Stelle die Bereiche

¹ Im Klimaschutzkonzept erfolgen insbesondere die Berechnungen für das ausgewählte Basisjahr 1990 anhand statistischer Daten.

² N₂O und CH₄ wurden in CO₂-Äquivalente umgerechnet (vgl. IPCC 2007: S. 36)

³ Vgl. Fritsche und Rausch 2011

⁴ Vgl. Difu 2011; Der Klimaschutzleitfaden spricht Empfehlungen zur Bilanzierungsmethodik im Rahmen von Klimaschutzkonzepten aus. Das IfaS schließt sich im vorliegenden Fall dieser Methodik an, da die Empfehlungen des Praxisleitfadens unter anderem durch das Umweltbundesamt (UBA) sowie das Forschungszentrum Jülich GmbH (PTJ) fachlich unterstützt wurden.

⁵ Des Weiteren ermöglicht die Betrachtung der Endenergie eine höhere Transparenz auch für fachfremde Betroffene und Interessierte, da ein Bezug eher zur Endenergie besteht und keine Rückrechnung von Endenergie zur Primärenergie nachvollzogen werden muss.

Strom, Wärme, Verkehr sowie Abfall und Abwasser hinsichtlich ihrer Verbrauchs- und Versorgungsstrukturen analysiert.⁶

1.1.1.1 Gesamtstromverbrauch und Stromerzeugung

Zur Ermittlung des Stromverbrauches des Betrachtungsgebietes wurden die zur Verfügung gestellten Daten des zuständigen Netzbetreibers⁷ über die gelieferten und durchgeleiteten Strommengen an private, kommunale sowie gewerbliche und industrielle Abnehmer herangezogen.⁸ Die vorliegenden Verbrauchsdaten gehen auf das Jahr 2011 zurück und weisen einen Gesamtstromverbrauch von ca. 48.000 MWh/a für die Verbandsgemeinde aus.

Mit einem jährlichen Verbrauch von ca. 32.000 MWh weist die Verbrauchergruppe Private Haushalte den höchsten Stromverbrauch der Verbandsgemeinde auf. Im Bereich Industrie, Gewerbe Handel und Dienstleistungen werden jährlich ca. 14.000 MWh benötigt. Gemessen am Gesamtstromverbrauch stellen die kommunalen Liegenschaften⁹ mit einer jährlichen Verbrauchsmenge von etwa 2.000 MWh erwartungsgemäß die kleinste Verbrauchsgruppe des Betrachtungsgebietes dar (siehe dazu Abb. 1-3)¹⁰

Heute werden bilanziell betrachtet ca. 3% des Gesamtstromverbrauches der Verbandsgemeinde aus erneuerbarer Stromproduktion gedeckt. Damit liegt der Anteil Erneuerbarer Energien an der Stromproduktion deutlich unter dem Bundesdurchschnitt von 20,3% im Jahr 2011. Die lokale Stromproduktion setzt sich vor allem aus der Nutzung von Photovoltaikund Wasserkraftanlagen zusammen. Die folgende Abbildung zeigt den derzeitigen Beitrag der Erneuerbaren Energien im Verhältnis zum Gesamtstromverbrauch auf:

¹ Vgl. BMU 2012: S. 12

⁶ Detailangaben zu den Berechnungsparametern sind der Erläuterung zu den Wirkungsanalysen im Anhang zu entnehmen.

⁷ In diesem Fall ist der zuständige Netzbetreiber für den Landkreis Südwestpfalz: Für die A-Gemeinden die gemeindeeigenen Elektrizitätswerke; für alle anderen die Pfalzwerke AG.

⁸ Die Daten wurden in folgender Aufteilung übermittelt: Straßenbeleuchtung, Speicherheizung, Gewerbe, öffentliche Liegenschaften und Private Haushalte.

⁹ Auf Verbandsgemeindeebene werden nur die kommunalen Liegenschaften betrachtet (ohne die Kreiseigenen).

¹⁰ Die angegebenen Verbrauchswerte innerhalb der Sektoren wurden mit Excel von kWh auf MWh abgerundet, aus diesem Grund kann es zu rundungsbedingten Abweichungen in Bezug auf die Gesamtverbrauchsmenge kommen.

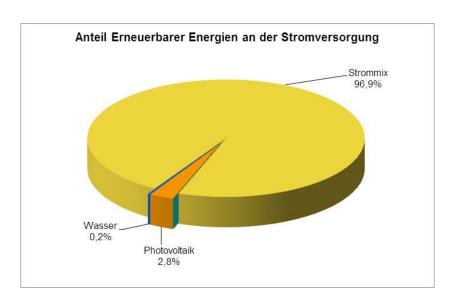


Abb. 1-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Dahner Felsenland

1.1.1.2 Gesamtwärmeverbrauch und Wärmeerzeugung

Die Ermittlung des Gesamtwärmebedarfes auf dem Gebiet der Verbandsgemeinde stellt sich im Vergleich zur Stromverbrauchsanalyse deutlich schwieriger dar. Neben konkreten Verbrauchszahlen für leitungsgebundene Wärmeenergie (Erdgas) kann in der Gesamtbetrachtung aufgrund einer komplexen und zum Teil nicht leitungsgebundenen Versorgungsstruktur lediglich eine Annäherung an tatsächliche Verbrauchswerte erfolgen. Zur Ermittlung des Wärmebedarfes auf Basis leitungsgebundener Energieträger wurden Verbrauchsdaten über die Erdgasliefermengen im Verbrauchsgebiet der Verbandsgemeinde für das Jahr 2011 des Netzbetreibers¹² herangezogen. Ferner wurden für die Ermittlung des Wärmebedarfes im privaten Wohngebäudebestand die Daten des Zensus 87¹³ und der Baufertigstellungsstatistik 1990 bis 2010¹⁴ betrachtet und ausgewertet (vgl. dazu Kapitel 1.2).

Des Weiteren wurden die durch das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) gelieferten Daten über geförderte innovative Erneuerbare-Energien-Anlagen (Solarthermie-Anlagen¹⁵, mechanisch beschickte Bioenergieanlagen¹⁶, Wärmepumpen¹⁷, KWK-Anlagen¹⁸) bis zum Jahr 2012 herangezogen.

Insgesamt konnte für die Verbandsgemeinde ein jährlicher Gesamtwärmeverbrauch von rund 175.000 MWh ermittelt werden.¹⁹

¹² In diesem Fall ist der zuständige Netzbetreiber für den gesamten Landkreis: Die Pfalzgas GmbH

¹³ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: a

¹⁴ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: b und c

¹⁵ Vgl. Webseite Solaratlas

¹⁶ Vgl. Webseite Biomasseatlas

¹⁷ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J. c

¹⁸ Vgl. Datenübermittlung Alfred Smuck (BAFA) vom 13.11.2012

¹⁹ Der Gesamtwärmeverbrauch setzt sich aus folgenden Punkten zusammen: Angaben zu gelieferten Gasmengen der Netzbetreiber, Hochrechnung des Wärmeverbrauches im privaten Wohngebäudesektor, Angaben der Verwaltung zu kommunalen Liegenschaften sowie statistischen Angaben über den Ölverbrauch der Industrie im Betrachtungsgebiet.

Mit einem jährlichen Anteil von ca. 90% des Gesamtwärmeverbrauches (ca. 158.000°MWh/a) stellen die Privaten Haushalte mit Abstand den größten Wärmeverbraucher der Verbandsgemeinde dar. An zweiter Stelle steht die Verbrauchergruppe Industrie, Gewerbe Handel und Dienstleistungen mit einem Anteil von ca. 8% (ca. 14.000°MWh/a). Kommunale Liegenschaften dagegen sind nur zu ca. 2% (ca. 3.000 MWh/a) am Gesamtwärmeverbrauch beteiligt.

Derzeit können etwa 8% des Gesamtwärmeverbrauches über erneuerbare Energieträger abgedeckt werden. Damit liegt der Anteil Erneuerbarer Energien an der Wärmebereitstellung unter dem Bundesdurchschnitt, der im Jahr 2011 bei 11% lag.²⁰ In der Verbandsgemeinde Dahner Felsenland beinhaltet die Wärmeproduktion aus Erneuerbaren Energieträgern vor allem die Verwendung von Biomasse-Festbrennstoffen, solarthermischen Anlagen und Wärmepumpen. Die folgende Darstellung verdeutlicht, dass die Wärmeversorgung im IST-Zustand überwiegend auf fossilen Energieträgern basiert.

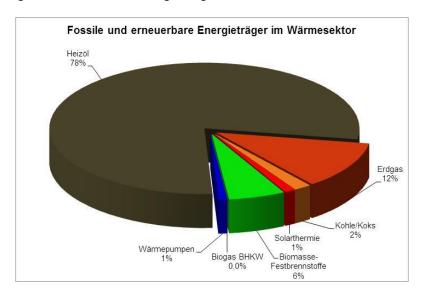


Abb. 1-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Dahner Felsenland

1.1.1.3 Energieverbrauch im Sektor Verkehr

Im Vergleich zum Energieverbrauch und dem Ausstoß der THG-Emissionen von 1990 sind diese in 2012 nur um 6% gestiegen obwohl sich der Fahrzeugbestand im gleichen Zeitraum um 20% erhöht hat. Der geringe Anstieg des Energieverbrauchs und der THG-Emissionen ist auf Effizienzgewinne zurückzuführen. Bereits 2020 wird eine Reduktion um 5% (Energie) sowie 34% (Emissionen) durch effizientere Technologien, biogene Kraftstoffe und die Zielvorgabe der Bundesregierung von "1 Millionen Elektrofahrzeuge bis 2020 auf Deutschlands Straßen" erfolgen.

²⁰ Vgl. BMU 2012: S. 14

Dieser Trend wird sich in den Folgejahren fortsetzen, sodass der Endenergieverbrauch bis zum Jahr 2050 auf jährlich rund 55.412 MWh/a fällt sowie die THG-Emissionen auf 0 t/a CO₂. Dies entspricht einer Reduktion von insgesamt ca. 59% (Energie) und 100% (Emissionen) gegenüber dem Basisjahr 1990.

Tab. 1-1: Energiebilanz der VG Dahner Land

Gesamt	1990	2012	2020	2030	2040	2050
Gesaint	MWh	MWh	MWh	MWh	MWh	MWh
Fossile Kraftstoffe	134.008,40	141.875,59	119.609,68	92.694,73	42.814,57	0,00
- Diesel	84.745,41	89.218,09	68.375,07	55.210,45	25.917,08	0,00
- Ottokraftstoff	49.262,98	49.952,43	46.794,62	34.103,86	15.954,95	0,00
- Erdgas	0,00	27,77	1.706,87	1.260,58	691,07	0,00
- Flüssiggas	0,00	2.677,29	2.733,12	2.119,83	251,48	0,00
Erneuerbare Kraftstoffe	0,00	0,00	8.231,99	18.676,99	38.394,11	55.412,00
- Bio-/Windgas	0,00	0,00	4.483,92	7.119,18	11.170,28	10.051,15
- Strom	0,00	0,00	3.748,07	11.557,82	27.223,82	45.360,84
Gesamt	134.008,40	141.875,59	127.841,67	111.371,72	81.208,67	55.412,00
Differenz zu 1990		7.867,19	-6.166,72	-22.636,68	-52.799,72	-78.596,40
Veränderung in Prozent		6%	-5%	-17%	-39%	-59%

Tab. 1-2: Emissionsbilanz der VG Dahner Land

Gesamt	1990	2012	2020	2030	2040	2050
Gesam	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2
Fossile Kraftstoffe	35.626,32	37.678,38	23.353,61	16.994,42	7.520,46	0,00
- Diesel	23.879,56	25.139,87	12.514,84	9.285,64	4.352,36	0,00
- Ottokraftstoff	11.746,76	11.906,42	9.780,46	6.934,89	2.965,44	0,00
- Erdgas	0,00	5,61	369,99	263,37	136,79	0,00
- Flüssiggas	0,00	626,49	688,32	510,53	65,87	0,00
Erneuerbare Kraftstoffe	0,00	0,00	0,00	0,00	0,00	0,00
- Bio-/Windgas	0,00	0,00	0,00	0,00	0,00	0,00
- Strom	0,00	0,00	0,00	0,00	0,00	0,00
Gesamt	35.626,32	37.678,38	23.353,61	16.994,42	7.520,46	0,00
Differenz zu 1990		2.052,06	-12.272,71	-18.631,90	-28.105,87	-35.626,32
Veränderung in Prozent		6%	-34%	-52%	-79%	-100%

1.1.1.4 Energieverbrauch im Sektor Abfall / Abwasser

Die Emissionen und Energieverbräuche des Sektors Abfall und Abwasser sind im Kontext des vorliegenden integrierten Klimaschutzkonzeptes sowie der dazugehörigen Treibhausgasbilanz als sekundär zu bewerten und werden aus diesem Grund größtenteils statistisch abgeleitet. Auf den Bereich Abfall und Abwasser ist weniger als 1% der Gesamtemissionen zurückzuführen.²¹

Der Energieverbrauch im Bereich der Abfallwirtschaft lässt sich zum einen auf die Behandlung der anfallenden Abfallmengen und zum anderen auf den Abfalltransport zurückführen. Abgeleitet aus den verschiedenen Abfallfraktionen im Entsorgungsgebiet fielen in der Verbandgemeinde Dahner Felsenland²² im Jahr 2011 insgesamt ca. 5.900 t Abfall an.

²¹ Bezogen auf die nicht-energetischen Emissionen. Die Emissionen aus dem stationären Energieverbrauch und dem Verkehr sind bereits in den entsprechenden Kapiteln enthalten und werden nicht separat für den Abfall- und Abwasserbereich dargestellt.

² Vgl. Ministerium für Wirtschaft, Klimaschutz, Energie und Landesplanung Rheinland-Pfalz 2012

Die durch die Abfallbehandlung entstehenden THG-Emissionen im stationären- sowie im Transportbereich, finden sich im Rahmen der Energie- und Treibhausgasbilanz im Sektor Strom, Wärme und Verkehr wieder. Das deutschlandweite Verbot einer direkten Mülldeponierung seit 2005 und die gesteigerte Kreislaufwirtschaft führten dazu, dass die Emissionen, die dem Abfallsektor zuzurechnen waren, stark gesunken sind. Die Abfallentsorgung in Müllverbrennungsanlagen erfolgt vollständig unter energetischer Nutzung, sodass derzeit lediglich die Emissionen der Bio- und Grünabfälle mit einem Faktor von 17 kg CO₂e/t Abfall²³ berechnet werden. Für das Betrachtungsgebiet konnte in dieser Fraktion eine Menge von 830 t/a ermittelt werden. Demnach werden jährlich ca. 14 t CO₂-e verursacht.

Die Energieverbräuche zur Abwasserbehandlung sind ebenfalls im stationären Bereich der Bilanz eingegliedert (Strom und Wärme) und fließen auch in diesen Sektoren in die Treibhausgasbilanz ein. Zusätzliche Emissionen entstehen aus der Abwasserreinigung (N₂O durch Denitrifikation) und der anschließenden Weiterbehandlung des Klärschlamms (stoffliche Verwertung). Gemäß den Einwohnerwerten (Berechnung der N₂O-Emissionen) für das Betrachtungsjahr 2011 sowie Angaben des Statistischen Landesamtes Rheinland-Pfalz zur öffentlichen Klärschlammentsorgung²⁴ wurden für den IST-Zustand der Abwasserbehandlung Emissionen in Höhe von ca. 286 t CO₂-e ermittelt.

1.1.2 Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern

Der Gesamtenergieverbrauch bildet sich als Summe der zuvor beschriebenen Teilbereiche und beträgt im abgeleiteten "IST-Zustand"²⁵ ca. 365.000 MWh/a. Der Anteil der Erneuerbaren Energien am stationären Verbrauch²⁶ (exklusive Verkehr) liegt in der Verbandsgemeinde durchschnittlich bei 7%. Die nachfolgende Grafik zeigt einen Gesamtüberblick über die derzeitigen Energieverbräuche auf, unterteilt nach Energieträgern und Sektoren:

²³ Vgl. Difu 2011: S. 266

²⁴ Vgl. Statistisches Landesamt Rheinland-Pfalz 2012

²⁵ An dieser Stelle ist zu erwähnen, dass sich die Datenquellen der verschiedenen Bausteine zur Errechnung des Gesamtenergieverbrauches auf unterschiedliche Bezugsjahre beziehen. Da kein einheitliches Bezugsjahr über alle Datenquellen hinweg angesetzt werden konnte, hat der Konzeptersteller jeweils den aktuellsten Datensatz verwandt. In den betroffenen Verbrauchsbereichen wurde davon ausgegangen, dass sich die Verbrauchsmengen in den letzten Jahren nicht signifikant verändert haben. ²⁶ Hier wird der Vergleich mit dem stationären Energieverbrauch herangezogen, da im IST-Zustand mit der gegebenen Statistik keine erneuerbaren Energieträger als Treibstoff zu ermitteln waren.

IST-Zustand VG Dahner Felsenland

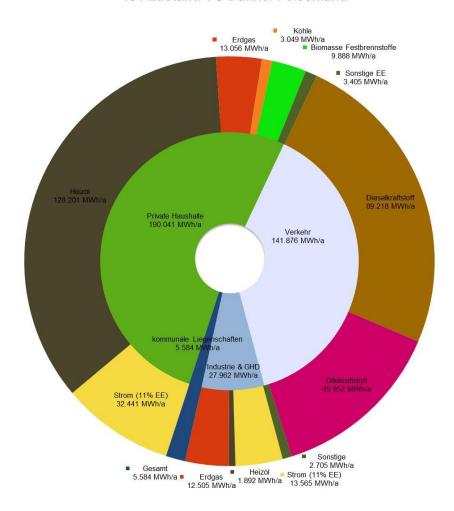


Abb. 1-3: Gesamtenergieverbrauch der Verbandsgemeinde Dahner Felsenland im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren

Die zusammengefügte Darstellung der Energieverbräuche nach Verbrauchergruppen lässt erste Rückschlüsse über die dringlichsten Handlungssektoren des Klimaschutzkonzeptes zu. Das derzeitige Versorgungssystem ist augenscheinlich durch den Einsatz fossiler Energieträger geprägt. Für die regenerativen Energieträger ergibt sich demnach ein großer Ausbaubedarf. Des Weiteren lässt sich ableiten, dass die kommunalen Liegenschaften und Einrichtungen des Betrachtungsgebietes aus energetischer Sicht nur in geringem Maße zur Bilanzoptimierung beitragen können. Dennoch wird die Optimierung dieses Bereiches – insbesondere in Hinblick auf die Vorbildfunktion der Verbandsgemeinde gegenüber den weiteren Verbrauchergruppen – als besonders notwendig erachtet.

Den größten Energieverbrauch mit ca. 190.000°MWh/a verursachen in der Verbandsgemeinde Dahner Felsenland die Privaten Haushalte. Folglich entsteht hier auch der größte Handlungsbedarf, welcher sich vor allem im Einsparpotenzial der fossilen Wärmeversorgung

widerspiegelt. Zweitgrößte Verbrauchergruppe ist der Verkehrssektor mit einem ermittelten Verbrauch von ca. 142.000°MWh/a. Im Hinblick auf die Verbrauchsgruppe Industrie und GHD entsteht ein Energieverbrauch von ca. 28.000°MWh/a. Die Verbandsgemeinde kann auf diese Verbrauchssektoren einen indirekten Einfluss nehmen, um die Energiebilanz und die damit einhergehenden ökologischen und ökonomischen Effekte zu verbessern.

1.1.3 Treibhausgasemissionen der Verbandsgemeinde Dahner Felsenland

Ziel der Treibhausgasbilanzierung auf kommunaler Ebene ist es, spezifische Referenzwerte für zukünftige Emissionsminderungsprogramme zu erheben. In der vorliegenden Bilanz werden auf Grundlage der zuvor erläuterten verbrauchten Energiemengen die territorialen Treibhausgasemissionen (CO₂e) in den Bereichen Strom, Wärme, Verkehr sowie Abfall und Abwasser quantifiziert. Die folgende Darstellung bietet einen Gesamtüberblick der relevanten Treibhausgasemissionen der Verbandsgemeinde, welche sowohl für den IST-Zustand als auch für das Basisjahr 1990 errechnet wurden.

Abb. 1-4: Treibhausgasemissionen der Verbandsgemeinde Dahner Felsenland (1990 und IST-Zustand)

Im Referenzjahr 1990 wurden aufgrund des Energieverbrauches²⁷ der Verbandsgemeinde ca. 117.000°t CO₂-e emittiert. Für den ermittelten IST-Zustand wurden jährlich Emissionen

²⁷ Im Rahmen der retrospektiven Bilanzierung für das Basisjahr 1990 konnte auf keine Primärdatensätze zurückgegriffen werden. Der Stromverbrauch wurde anhand des Gesamtstromverbrauches von Rheinland-Pfalz (Vgl. Statistisches Landesamt Rheinland-Pfalz 2012: S. 18) über Einwohneräquivalente und Pro-Kopf-Verbrauchsentwicklungen von Rheinland-Pfalz auf 1990 rückgerechnet. Der Wärmeverbrauch der Privaten Haushalte konnte auf statistischer Grundlage zur Verteilung der Feuerungsanlagen und Wohngebäude (Zensus 1987) auf das Basisjahr zurückgerechnet werden. Die Rückrechnung für den Sektor Indus-

von etwa 100.000 t/CO₂-e kalkuliert. Gegenüber dem Basisjahr 1990 konnten somit bereits ca. 14% der Emissionen eingespart werden.

Große Einsparungen entstanden vor allem im Strombereich, welche sowohl auf den Ausbau der Photovoltaik- und Wasserkraftanlagen als auch auf eine bundesweite Verbesserung des anzusetzenden Emissionsfaktors im Stromsektor zurückzuführen sind.²⁸ Im Stromsektor kann demnach von einer Reduktionsentwicklung von ca. 29% ausgegangen werden.

Insgesamt stellt der Wärmebereich derzeit mit ca. 41% den größten Verursacher der Treibhausgasemissionen dar und bietet den größten Ansatzpunkt für Einsparungen, welche im weiteren Verlauf des Klimaschutzkonzeptes (insbesondere im Maßnahmenkatalog) erläutert werden.

1.2 Energieeffizienz

In der Verbandsgemeinde Dahner Felsenland befinden sich zum Jahr 2010 insgesamt 5.314 Wohngebäude mit einer Wohnfläche von ca. 800.000 m². Die Gebäudestruktur teilt sich in 70% Einfamilienhäuser, 24% Zweifamilienhäuser und 6% Mehrfamilienhäuser.

Die folgende Tabelle gibt einen Überblick des Wohngebäudebestandes der VG (nach Baualtersklassen unterteilt).

				20
Tah	. 1-3: Wohngebäudebestand	l der VG Dahner Fe	elsenland nach F	Raualtersklassen³∪

Altersklasse	Prozentualer Anteil	Wohngebäude nach Altersklassen	Davon Ein- und Zweifamilienhäuser	Davon Mehrfamilienhäuser
bis 1918	15,21%	808	763	45
1919 - 1948	12,78%	679	641	38
1949 - 1978	42,63%	2.265	2.138	127
1979 - 1990	14,80%	786	742	44
1991 - 2000	10,72%	570	538	32
2001 - Heute	3,86%	205	194	12
Gesamt	100%	5.314	5.015	299

Insgesamt existieren in der Verbandsgemeinde 4.765 Primärheizer und 2.239 Sekundärheizer (z. B. Holzeinzelöfen). Die Verteilung der Heizenergieanlagen ist in nachfolgender Tabelle dargestellt.

© IfaS 2013

t

trie & GHD erfolgte über die Erwerbstätigen am Arbeitsort (Vgl. AK ETR 2010). Dabei wurde von heutigen Verbrauchsdaten ausgegangen. Die Emissionen im Sektor Verkehr konnten durch die Zulassungen und Verbrauchswerte des Fahrzeugbestandes im Jahr 1990 berechnet werden. Verbrauchsdaten im Abfall- und Abwasserbereich wurden auf Grundlage der Landesstatistiken (Vgl. Ministerium für Umwelt, Forsten und Verbraucherschutz o.J.: S. 13 ff. und Statistisches Landesamt Rheinland-Pfalz 2012: S.4) in diesem Bereich auf 1990 rückgerechnet.

^{2012:} S.4) in diesem Bereich auf 1990 rückgerechnet.

Rür das Jahr 1990 wurde ein CO₂-e-Faktor von 683 g/kWh exklusive der Vorketten berechnet. Berechnungsgrundlage ist an dieser Stelle Gemis 4.7 in Anlehnung an die Kraftwerksstruktur zur Stromerzeugung im Jahr 1990 (Vgl. BMU 2010)

²⁹ Vgl. Statistisches Landesamt Rheinland-Pfalz, 2010
³⁰ Vgl. Destatis, schriftliche Mitteilung von Frau Leib-Manz (Bereich Bautätigkeiten), Verteilung innerhalb der Baualtersklassen – Tabelle zur Aufteilung des Deutschen Wohngebäudebestandes nach Bundesländern und Baualtersklassen, am 15.09.2010.

Tab. 1-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträger

Energieträger	Primärheizer	Sekundärheizer
Öl	4.291	655
Gas	442	26
Strom	32	199
Kohle, Holz		1.359
Summe	4.765	2.239
Gesamt	7.00	04

Außerdem gibt es in der VG noch 88 Wärmepumpen und durch das Marktanreizprogramm geförderte Biomasseanlagen mit insgesamt 3.620 kW installierter Leistung.

Es ergibt sich ein gesamter Heizwärmeverbrauch der privaten Wohngebäude innerhalb der Verbandsgemeinde von derzeit 158 GWh/a.

Insbesondere bei veralteten Heizungsanlagen ist ein hohes Einsparpotenzial vorhanden. Folgende Tabelle stellt die Anzahl der Anlagen für Öl- und Gasheizungen nach Baualtersklassen dar:

Tab. 1-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen

	Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen								
Тур	bis 1978	1979-1982	1983-1988	1988-1997	1998-2008	ab 2009			
ÖI	275	203	618	1.854	1.305	36			
Gas	7	14	53	226	137	5			

Eigene Liegenschaften:

Aufgrund eines Heizwärmeverbrauchs der auswertbaren 18 eigenen Gebäude in der Verbandsgemeinde (siehe **Fehler! Verweisquelle konnte nicht gefunden werden.**) von .100 MWh im Jahr 2011 (bei 14.500 m² Nutzfläche), wurden für die einzelnen Gebäude der spezifische Heizwärmeverbrauch in kWh/(m²*a) ermittelt und in folgender Abbildung dargestellt.

Tab. 1-6: Übersicht Öffentliche Liegenschaften

Mr	Öffentliche Liegenschaften
	Gemeindehaus
	Gemeindehalle
	Dorfgemeinschaftshaus
	Dorfgemeinschaftshaus
	Alter Kindergarten
	Feuerwehrgerätehaus Dahn
	Feuerwehrgerätehaus Bruchweiler
	Feuerwehrgerätehaus Fischbach
	Feuerwehrgerätehaus Rumbach
	Kath. Kindertagesstätte St. Franziskus
	Kath. Kindertagesstätte St. Martin
	Kath. Kindertagesstätte St. Franziskus
	Kath. Kindertagesstätte Erfweiler
14	Grundschule Dahn
15	Grundschule St. Georg
16	Felsland-Grundschule
17	Grundschule Sauertal
18	Jugendraum Dahn

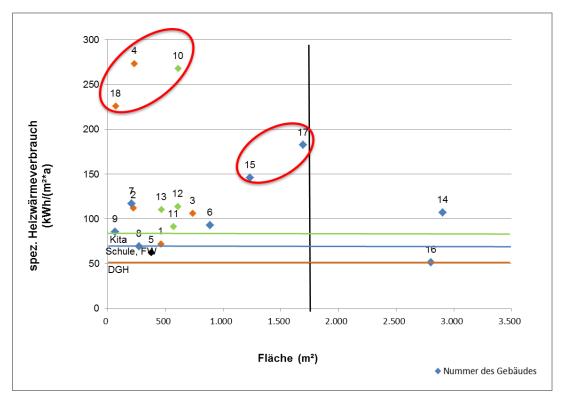


Abb. 1-5: VG Dahner Felsenland – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche

Tab. 1-7: Gebäude mit hohen Wärmeverbräuchen

Nr.	Gebäude	BGF (m²)	Verbrauch (kWh/a)
4	Dorfgemeinschaftshaus Hauptstr.	230	80.130
10	Kath. Kindertagesstätte St. Franziskus	610	208.590
15	Grundschule St. Georg	1.233	229.304
17	Grundschule Sauertal	1.694	394.430
18	Jugendraum Dahn	69	19.853

Die Gesamtleistung der 63 Heizungsanlagen beträgt 2.666 kW und verteilt sich auf die einzelnen Energieträger wie in folgender Tabelle dargestellt:

Tab. 1-8: Leistung der Heizungsanlagen nach Energieträger

Energieträger	Anzahl	Leistung (kW)
Öl	30	938
Gas	21	1.488
Nachtspeicher	3	
Strom	4	3
Flüssiggas	3	191
Wärmepumpe	2	46
Summe	63	2.666

1.3 Erneuerbarer Energien

1.3.1 Photovoltaikpotenzial auf Freiflächen

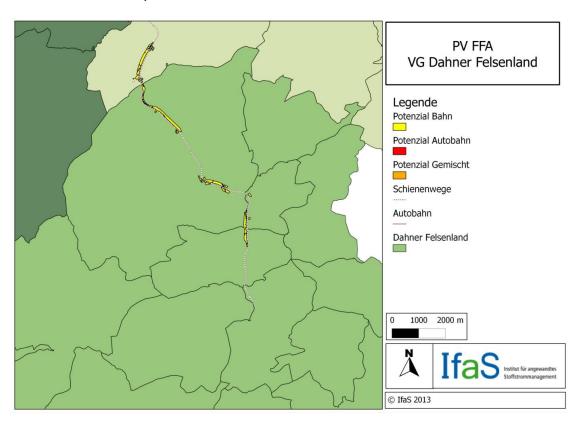


Abb. 1-6: Photovoltaikpotenzial auf Freiflächen VG Dahner-Felsenland

Tab. 1-9: Photovoltaikpotenzial auf Freiflächen VG Dahner-Felsenland

	Ausbaupote	nziale PV-FFA		
Standorttyp	Anzahl	Fläche	Install. Leistung ¹	Stromerträge ²
Startuorityp	(Stück)	(m²)	(kWp)	(MWh/a)
Schienenwege	12	401.000	16.000	14.400
1: 25 m²/kWP	2 · 900 kWh*a /kWP			

1.3.2 Solarenergiepotenzial auf Dachflächen

Belegungsszenario: vorrangig 14 m² Solarthermie, zusätzlich PV ab 28 m² (4 kWp)

Tab. 1-10: Solarenergiepotenzial auf Dachflächen VG Dahner Felsenland

	Ausbaupotenziale Solar	renergie auf Da	achflächen	
Photov	oltaik		Solarthermie	
Installierbare Leistung ¹ (kWp)	Stromerträge (MWh/a)	Kollektorfläche ² (m²)	Wärmeerträge ³ (MWh/a)	Heizöläquivalente ⁴ (I)
47.000	41.300	80.000	29.500	3.469.000

1) 7 m² pro kWp Dickschicht/12,5 m² pro kWp Dünnschicht

2) 14 m² Solarthermie pro Dachfläche

3) Ertrag von 350 kWh/m² Solarthermie

4) Verdrängung Ölheizung

5) Techn. Potenzial - Bestand = Ausbaupotenzial

Bestand ST: Angaben der BAFA zu geförderten Anlagen

Bestand PV: Angaben aus EEG Anlagenregister 2011

Werte auf volle hundert gerundet

1.3.3 Windenergiepotenzial

Tab. 1-11: Windenergiepotenzial VG Dahner-Felsenland

	Ausbaupotenziale	Windenergi	е	
Potenzialfläche (ha)	Anteil (%)	mögliche WEA	Install. Leistung (MW)	Stromerträge (GWh/a)
1.076	9	75	172,5	362

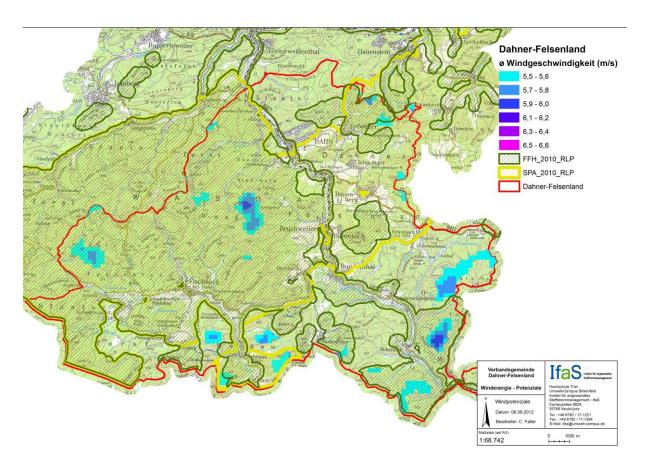


Abb. 1-7: Windenergiepotenzial VG Dahner-Felsenland

1.3.4 Geothermiepotenzial

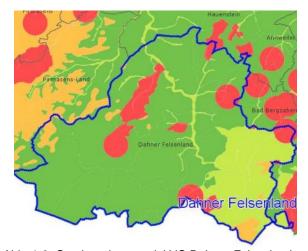


Abb. 1-8: Geothermiepotenzial VG Dahner-Felsenland

Wie auf der Karte zu sehen, ist die VG Dahner Felsenland zum überwiegenden Teil als unkritisch zu bewerten. Die kritischen Gebiete befinden sich größtenteils außerhalb von Ortsgemeinden auf Wald- und Wiesengebieten.

1.3.5 Biomassepotenzial

Tab. 1-12: Biomassepotenzial VG Dahner-Felsenland

			Ausbaupotenzial	e Biomasse			
Festbrennstoffe Fortst	Festbrennstoffe aus Ackerflächen	Festbrennstoffe aus Grünschnitt und Landschaftspfle	Biogassubstrate aus landwirt.	Biogassubstrate aus Ackerflächen	Biogassubstrate aus Dauergrünland	Biogassubstrate organische Abfälle	Gesamt
[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]
49.777	0	1.468	481	0	5.525	1.083	58.334

1.3.6 Wasserkraftpotenzial

	Ausba	aupotenziale	e Wasserkraft		
Gewässer	Name der Anlage	installierte Leistung	Arbeits- vermögen	Volllast- stunden	Bundes- durchschnitt
		[kW]	[kWh/a]	[h]	[h]
Wieslauter	Falkenmühle	25	43.694	1.748	3.500
Wieslauter	Höhl	40	70.409	1.760	3.500

Tab. 1-13: Wasserkraftpotenzial VG Dahner-Felsenland

2 Verbandsgemeinde Hauenstein

2.1 Energie- und Treibhausgasbilanzierung (Startbilanz)

Um Klimaschutzziele innerhalb eines Betrachtungsraumes quantifizieren zu können, ist es unerlässlich, die Energieversorgung, den Energieverbrauch sowie die unterschiedlichen Energieträger zu bestimmen. Die Analyse bedarf der Berücksichtigung einer fundierten Datengrundlage und muss sich darüber hinaus statistischer Berechnungen³¹ bedienen, da keine vollständige Erfassung der Verbrauchs- und Produktionsdaten für die Verbandsgemeinde Hauenstein vorliegt.

Die Betrachtung der Energiemengen bezieht sich im Rahmen des Konzeptes auf die Form der Endenergie (z. B. Heizöl, Holzpellets, Strom). Die verwendeten Emissionsfaktoren beziehen sich auf die relevanten Treibhausgase CO₂, CH₄ sowie N₂O und werden als CO₂-Äquivalente³² (CO₂e) ausgewiesen. Die Faktoren stammen aus dem Globalen Emissions-Modell integrierter Systeme (GEMIS) in der Version 4.7³³ und sind als Anhang (Erläuterung zu den Wirkungsanalysen) zur Einsicht hinterlegt. Sie beziehen sich ebenfalls auf den Endenergieverbrauch und berücksichtigen keine Vorketten z. B. aus der Anlagenproduktion oder der Brennstoffbereitstellung. Das vorliegende Konzept bezieht sich im Wesentlichen systematisch auf das Gebiet der Verbandsgemeinde. Dementsprechend ist die Energie- und Treibhausgasbilanzierung nach der Methodik einer "endenergiebasierten Territorialbilanz" aufgebaut, welche im Praxisleitfaden "Klimaschutz in Kommunen" für die Erstellung von Klimaschutzkonzepten nahegelegt wird.³⁴ Die Betrachtung der Energiemengen bezieht sich vor diesem Hintergrund auf die Form der Endenergie.³⁵

Im Folgenden werden die Gesamtenergieverbräuche sowie die derzeitigen Energieversorgungsstrukturen der Verbandsgemeinde Hauenstein im IST-Zustand analysiert.

2.1.1 Analyse des Gesamtenergieverbrauches und der Energieversorgung

Mit dem Ziel, den Energieverbrauch und die damit einhergehenden Treibhausgasemissionen der Verbandsgemeinde im IST-Zustand abzubilden, werden an dieser Stelle die Bereiche

© IfaS 2013

_

³¹ Im Klimaschutzkonzept erfolgen insbesondere die Berechnungen für das ausgewählte Basisjahr 1990 anhand statistischer Daten.

³² N₂O und CH₄ wurden in CO₂-Äquivalente umgerechnet (Vgl. IPCC 2007: S. 36)

³³ Vgl. Fritsche und Rausch 2011

³⁴ Vgl. Difu 2011; Der Klimaschutzleitfaden spricht Empfehlungen zur Bilanzierungsmethodik im Rahmen von Klimaschutzkonzepten aus. Das IfaS schließt sich im vorliegenden Fall dieser Methodik an, da die Empfehlungen des Praxisleitfadens unter anderem durch das Umweltbundesamt (UBA) sowie das Forschungszentrum Jülich GmbH (PTJ) fachlich unterstützt wurden.

³⁵ Des Weiteren ermöglicht die Betrachtung der Endenergie eine höhere Transparenz auch für fachfremde Betroffene und Interessierte, da ein Bezug eher zur Endenergie besteht und keine Rückrechnung von Endenergie zur Primärenergie nachvollzogen werden muss.

Strom, Wärme, Verkehr sowie Abfall und Abwasser hinsichtlich ihrer Verbrauchs- und Versorgungsstrukturen analysiert.³⁶

2.1.1.1 Gesamtstromverbrauch und Stromerzeugung

Zur Ermittlung des Stromverbrauches des Betrachtungsgebietes wurden die zur Verfügung gestellten Daten des zuständigen Netzbetreibers³⁷ über die gelieferten und durchgeleiteten Strommengen an private, kommunale sowie gewerbliche und industrielle Abnehmer herangezogen.³⁸ Die vorliegenden Verbrauchsdaten gehen auf das Jahr 2011 zurück und weisen einen Gesamtstromverbrauch von rund 30.000 MWh/a für die Verbandsgemeinde aus.

Mit einem jährlichen Verbrauch von ca. 19.000 MWh weist die Verbrauchergruppe Private Haushalte den höchsten Stromverbrauch der Verbandsgemeinde auf. Im Bereich Industrie, Gewerbe Handel und Dienstleistungen werden jährlich ca. 10.000 MWh benötigt. Gemessen am Gesamtstromverbrauch stellen die kommunalen Liegenschaften³⁹ mit einer jährlichen Verbrauchsmenge von etwa 1.000 MWh erwartungsgemäß die kleinste Verbrauchsgruppe des Betrachtungsgebietes dar (siehe dazu Abb. 2-3).⁴⁰

Heute werden bilanziell betrachtet ca. 8% des Gesamtstromverbrauches der Verbandsgemeinde aus erneuerbarer Stromproduktion gedeckt. Damit liegt der Anteil Erneuerbarer Energien an der Stromproduktion deutlich unter dem Bundesdurchschnitt von 20,3% im Jahr 2011.⁴¹ Die lokale Stromproduktion speist sich vor allem aus der Nutzung von Photovoltaikanlagen. Die folgende Abbildung zeigt den derzeitigen Beitrag der Erneuerbaren Energien im Verhältnis zum Gesamtstromverbrauch auf:

© IfaS 2013

_

³⁶ Detailangaben zu den Berechnungsparametern sind der Erläuterung zu den Wirkungsanalysen im Anhang zu entnehmen.

In diesem Fall ist der zuständige Netzbetreiber für den Landkreis Südwestpfalz: Für die A-Gemeinden die gemeindeeigenen Elektrizitätswerke; für alle anderen die Pfalzwerke AG.

³⁸ Die Daten wurden in folgender Aufteilung übermittelt: Straßenbeleuchtung, Speicherheizung, Gewerbe, öffentliche Liegenschaften und Private Haushalte.

³⁹ Auf Verbandsgemeindeebene werden nur die kommunalen Liegenschaften betrachtet (ohne die Kreiseigenen).

Die angegebenen Verbrauchswerte innerhalb der Sektoren wurden mit Excel von kWh auf MWh abgerundet, aus diesem Grund kann es zu rundungsbedingten Abweichungen in Bezug auf die Gesamtverbrauchsmenge kommen.

41 Vgl. BMU 2012: S. 12

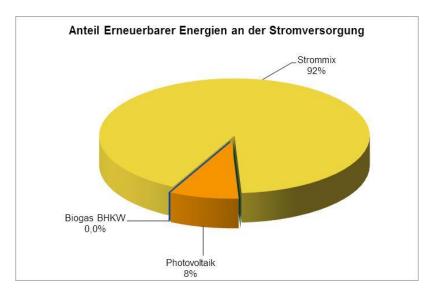


Abb. 2-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Hauenstein

2.1.1.2 Gesamtwärmeverbrauch und Wärmeerzeugung

Die Ermittlung des Gesamtwärmebedarfes auf dem Gebiet der Verbandsgemeinde stellt sich im Vergleich zur Stromverbrauchsanalyse deutlich schwieriger dar. Neben konkreten Verbrauchszahlen für leitungsgebundene Wärmeenergie (Erdgas) kann in der Gesamtbetrachtung aufgrund einer komplexen und zum Teil nicht leitungsgebundenen Versorgungsstruktur lediglich eine Annäherung an tatsächliche Verbrauchswerte erfolgen. Zur Ermittlung des Wärmebedarfes auf Basis leitungsgebundener Energieträger wurden Verbrauchsdaten über die Erdgasliefermengen im Verbrauchsgebiet der Verbandsgemeinde für das Jahr 2011 des Netzbetreibers⁴² herangezogen. Ferner wurden für die Ermittlung des Wärmebedarfes im privaten Wohngebäudebestand die Daten des Zensus 87⁴³ und der Baufertigstellungsstatistik 1990 bis 2010⁴⁴ betrachtet und ausgewertet (vgl. dazu Kapitel 1.2)

Des Weiteren wurden die durch das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) gelieferten Daten über geförderte innovative Erneuerbare-Energien-Anlagen (Solarthermie-Anlagen⁴⁵, mechanisch beschickte Bioenergieanlagen⁴⁶, Wärmepumpen⁴⁷, KWK-Anlagen⁴⁸) bis zum Jahr 2012 herangezogen.

Insgesamt konnte für die Verbandsgemeinde ein jährlicher Gesamtwärmeverbrauch von rund 115.000 MWh ermittelt werden.⁴⁹

© IfaS 2013

-

⁴² In diesem Fall ist der zuständige Netzbetreiber für den gesamten Landkreis: Die Pfalzgas GmbH

⁴³ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: a

⁴⁴ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: b und c

⁴⁵ Vgl. Webseite Solaratlas

⁴⁶ Vgl. Webseite Biomasseatlas

⁴⁷ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J. c

⁴⁸ Vgl. Datenübermittlung Alfred Smuck (BAFA) vom 13.11.2012

⁴⁹ Der Gesamtwärmeverbrauch setzt sich aus folgenden Punkten zusammen: Angaben zu gelieferten Gasmengen der Netzbetreiber, Hochrechnung des Wärmeverbrauches im privaten Wohngebäudesektor, Angaben der Verwaltung zu kommunalen Liegenschaften sowie statistischen Angaben über den Ölverbrauch der Industrie im Betrachtungsgebiet.

Mit einem jährlichen Anteil von ca. 86% des Gesamtwärmeverbrauches (ca. 99.000°MWh/a) stellen die Privaten Haushalte mit Abstand den größten Wärmeverbraucher der Verbandsgemeinde dar. An zweiter Stelle steht die Verbrauchergruppe Industrie, Gewerbe Handel und Dienstleistungen mit einem Anteil von ca. 12% (ca. 14.000°MWh/a). Kommunale Liegenschaften dagegen sind nur zu ca. 2% (ca. 2.000 MWh/a) am Gesamtwärmeverbrauch beteiligt.

Derzeit können etwa 5% des Gesamtwärmeverbrauches über erneuerbare Energieträger abgedeckt werden. Damit liegt der Anteil Erneuerbarer Energien an der Wärmebereitstellung unter dem Bundesdurchschnitt, der im Jahr 2011 bei 11% lag. ⁵⁰ In der Verbandsgemeinde Hauenstein beinhaltet die Wärmeproduktion aus Erneuerbaren Energieträgern vor allem die Verwendung von Biomasse-Festbrennstoffen, solarthermischen Anlagen und Wärmepumpen. Die folgende Darstellung verdeutlicht, dass die Wärmeversorgung im IST-Zustand überwiegend auf fossilen Energieträgern basiert.

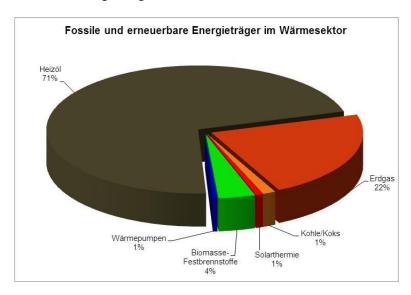


Abb. 2-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Hauenstein

2.1.1.3 Energieverbrauch im Sektor Verkehr

Im Vergleich zum Energieverbrauch und dem Ausstoß der THG-Emissionen von 1990 sind diese in 2012 nur um 6% gestiegen obwohl sich der Fahrzeugbestand im gleichen Zeitraum um 20% erhöht hat. Der geringe Anstieg des Energieverbrauchs und der THG-Emissionen ist auf Effizienzgewinne zurückzuführen. Bereits 2020 wird eine Reduktion um 5% (Energie) sowie 34% (Emissionen) durch effizientere Technologien, biogene Kraftstoffe und die Zielvorgabe der Bundesregierung von "1 Millionen Elektrofahrzeuge bis 2020 auf Deutschlands Straßen" erfolgen.

© IfaS 2013 20

_

⁵⁰ Vgl. BMU 2012: S. 14

Dieser Trend wird sich in den Folgejahren fortsetzen, sodass der Endenergieverbrauch bis zum Jahr 2050 auf jährlich rund 33.966 MWh/a fällt sowie die THG-Emissionen auf 0 t/a CO₂. Dies entspricht einer Reduktion von insgesamt ca. 59% (Energie) und 100% (Emissionen) gegenüber dem Basisjahr 1990.

Tab. 2-1: Energiebilanz der VG Hauenstein

Gesamt	1990	2012	2020	2030	2040	2050
Gesaint	MWh	MWh	MWh	MWh	MWh	MWh
Fossile Kraftstoffe	82.469,72	87.032,41	73.472,17	56.880,79	26.265,51	0,00
- Diesel	51.635,76	53.982,26	41.620,21	33.583,92	15.765,84	0,00
- Ottokraftstoff	30.833,96	30.332,25	29.120,61	21.224,92	9.929,38	0,00
- Erdgas	0,00	16,80	1.045,21	767,71	418,14	0,00
- Flüssiggas	0,00	2.701,09	1.686,13	1.304,25	152,16	0,00
Erneuerbare Kraftstoffe	0,00	0,00	5.031,55	11.470,94	23.568,82	33.966,28
- Bio-/Windgas	0,00	0,00	2.750,42	4.377,67	6.840,14	6.156,24
- Strom	0,00	0,00	2.281,14	7.093,27	16.728,67	27.810,04
Gesamt	82.469,72	87.032,41	78.503,73	68.351,73	49.834,33	33.966,28
Differenz zu 1990		4.562,69	-3.966,00	-14.117,99	-32.635,39	-48.503,45
Veränderung in Prozent		6%	-5%	-17%	-40%	-59%

Tab. 2-2: Emissionsbilanz der VG Hauenstein

Gesamt	1990	2012	2020	2030	2040	2050
Gesam	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2
Fossile Kraftstoffe	21.902,28	23.076,43	14.373,11	10.450,09	4.619,71	0,00
- Diesel	14.549,93	15.211,12	7.637,18	5.661,07	2.651,88	0,00
- Ottokraftstoff	7.352,36	7.229,86	6.086,24	4.315,62	1.845,21	0,00
- Erdgas	0,00	3,39	226,19	160,21	82,77	0,00
- Flüssiggas	0,00	632,05	423,49	313,20	39,85	0,00
Erneuerbare Kraftstoffe	0,00	0,00	0,00	0,00	0,00	0,00
- Bio-/Windgas	0,00	0,00	0,00	0,00	0,00	0,00
- Strom	0,00	0,00	0,00	0,00	0,00	0,00
Gesamt	21.902,28	23.076,43	14.373,11	10.450,09	4.619,71	0,00
Differenz zu 1990		1.174,14	-7.529,17	-11.452,19	-17.282,57	-21.902,28
Veränderung in Prozent		5%	-34%	-52%	-79%	-100%

2.1.1.4 Energieverbrauch im Sektor Abfall / Abwasser

Die Emissionen und Energieverbräuche des Sektors Abfall und Abwasser sind im Kontext des vorliegenden integrierten Klimaschutzkonzeptes sowie der dazugehörigen Treibhausgasbilanz als sekundär zu bewerten und werden aus diesem Grund größtenteils statistisch abgeleitet. Auf den Bereich Abfall und Abwasser ist weniger als 1% der Gesamtemissionen zurückzuführen.⁵¹

Der Energieverbrauch im Bereich der Abfallwirtschaft lässt sich zum einen auf die Behandlung der anfallenden Abfallmengen und zum anderen auf den Abfalltransport zurückführen. Abgeleitet aus den verschiedenen Abfallfraktionen im Entsorgungsgebiet fielen in der Verbandgemeinde Hauenstein⁵² im Jahr 2011 insgesamt ca. 3.600 t Abfall an.

⁵¹ Bezogen auf die nicht-energetischen Emissionen. Die Emissionen aus dem stationären Energieverbrauch und dem Verkehr sind bereits in den entsprechenden Kapiteln enthalten und werden nicht separat für den Abfall- und Abwasserbereich dargestellt.

⁵² Vgl. Ministerium für Wirtschaft, Klimaschutz, Energie und Landesplanung Rheinland-Pfalz 2012

Die durch die Abfallbehandlung entstehenden THG-Emissionen im stationären- sowie im Transportbereich, finden sich im Rahmen der Energie- und Treibhausgasbilanz im Sektor Strom, Wärme und Verkehr wieder. Das deutschlandweite Verbot einer direkten Mülldeponierung seit 2005 und die gesteigerte Kreislaufwirtschaft führten dazu, dass die Emissionen, die dem Abfallsektor zuzurechnen waren, stark gesunken sind. Die Abfallentsorgung in Müllverbrennungsanlagen erfolgt vollständig unter energetischer Nutzung, sodass derzeit lediglich die Emissionen der Bio- und Grünabfälle mit einem Faktor von 17 kg CO₂e/t Abfall⁵³ berechnet werden. Für das Betrachtungsgebiet konnte in dieser Fraktion eine Menge von 502 t/a ermittelt werden. Demnach werden jährlich ca. 9 t CO₂-e verursacht.

Die Energieverbräuche zur Abwasserbehandlung sind ebenfalls im stationären Bereich der Bilanz eingegliedert (Strom und Wärme) und fließen auch in diesen Sektoren in die Treibhausgasbilanz ein. Zusätzliche Emissionen entstehen aus der Abwasserreinigung (N₂O durch Denitrifikation) und der anschließenden Weiterbehandlung des Klärschlamms (stoffliche Verwertung). Gemäß den Einwohnerwerten (Berechnung der N₂O-Emissionen) für das Betrachtungsjahr 2011 sowie Angaben des Statistischen Landesamtes Rheinland-Pfalz zur öffentlichen Klärschlammentsorgung⁵⁴ wurden für den IST-Zustand der Abwasserbehandlung Emissionen in Höhe von ca. 173 t CO₂-e ermittelt.

2.1.2 Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern

Der Gesamtenergieverbrauch bildet sich als Summe der zuvor beschriebenen Teilbereiche und beträgt im abgeleiteten "IST-Zustand"⁵⁵ ca. 231.000 MWh/a. Der Anteil der Erneuerbaren Energien am stationären Verbrauch⁵⁶ (exklusive Verkehr) liegt in der Verbandsgemeinde durchschnittlich bei 6%. Die nachfolgende Grafik zeigt einen Gesamtüberblick über die derzeitigen Energieverbräuche auf, unterteilt nach Energieträgern und Sektoren:

⁵³ Vgl. Difu 2011: S. 266

 $^{^{54}}$ Vgl. Statistisches Landesamt Rheinland-Pfalz 2012

⁵⁵ An dieser Stelle ist zu erwähnen, dass sich die Datenquellen der verschiedenen Bausteine zur Errechnung des Gesamtenergieverbrauches auf unterschiedliche Bezugsjahre beziehen. Da kein einheitliches Bezugsjahr über alle Datenquellen hinweg angesetzt werden konnte, hat der Konzeptersteller jeweils den aktuellsten Datensatz verwandt. In den betroffenen Verbrauchsbereichen wurde davon ausgegangen, dass sich die Verbrauchsmengen in den letzten Jahren nicht signifikant verändert haben. ⁵⁶ Hier wird der Vergleich mit dem stationären Energieverbrauch herangezogen, da im IST-Zustand mit der gegebenen Statistik keine erneuerbaren Energieträger als Treibstoff zu ermitteln waren.

IST-Zustand VG Hauenstein

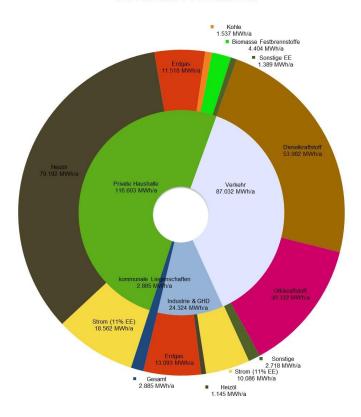


Abb. 2-3: Gesamtenergieverbrauch der Verbandsgemeinde Hauenstein im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren

Die zusammengefügte Darstellung der Energieverbräuche nach Verbrauchergruppen lässt erste Rückschlüsse über die dringlichsten Handlungssektoren des Klimaschutzkonzeptes zu. Das derzeitige Versorgungssystem ist augenscheinlich durch den Einsatz fossiler Energieträger geprägt. Für die regenerativen Energieträger ergibt sich demnach ein großer Ausbaubedarf. Des Weiteren lässt sich ableiten, dass die kommunalen Liegenschaften und Einrichtungen des Betrachtungsgebietes aus energetischer Sicht nur in geringem Maße zur Bilanzoptimierung beitragen können. Dennoch wird die Optimierung dieses Bereiches – insbesondere in Hinblick auf die Vorbildfunktion der Verbandsgemeinde gegenüber den weiteren Verbrauchergruppen – als besonders notwendig erachtet.

Den größten Energieverbrauch mit ca. 117.000.°MWh/a verursachen in der Verbandsgemeinde Hauenstein die Privaten Haushalte. Folglich entsteht hier auch der größte Handlungsbedarf, welcher sich vor allem im Einsparpotenzial der fossilen Wärmeversorgung widerspiegelt. Zweitgrößte Verbrauchergruppe ist der Verkehrssektor mit einem ermittelten Verbrauch von ca. 87.000°MWh/a. Im Hinblick auf die Verbrauchsgruppe Industrie und GHD entsteht ein Energieverbrauch von ca. 24.000°MWh/a. Die Verbandsgemeinde kann auf diese Verbrauchssektoren einen indirekten Einfluss nehmen, um die Energiebilanz und die damit einhergehenden ökologischen und ökonomischen Effekte zu verbessern.

2.1.3 Treibhausgasemissionen der Verbandsgemeinde Hauenstein

Ziel der Treibhausgasbilanzierung auf kommunaler Ebene ist es, spezifische Referenzwerte für zukünftige Emissionsminderungsprogramme zu erheben. In der vorliegenden Bilanz werden auf Grundlage der zuvor erläuterten verbrauchten Energiemengen die territorialen Treibhausgasemissionen (CO₂e) in den Bereichen Strom, Wärme, Verkehr sowie Abfall und Abwasser quantifiziert. Die folgende Darstellung bietet einen Gesamtüberblick der relevanten Treibhausgasemissionen der Verbandsgemeinde, welche sowohl für den IST-Zustand als auch für das Basisjahr 1990 errechnet wurden.

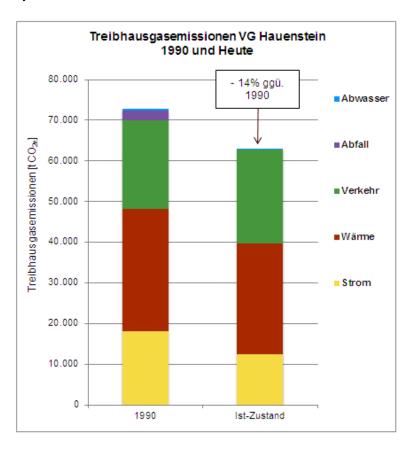


Abb. 2-4: Treibhausgasemissionen der Verbandsgemeinde Hauenstein (1990 und IST-Zustand)

Im Referenzjahr 1990 wurden aufgrund des Energieverbrauches⁵⁷ der Verbandsgemeinde ca. 73.000°t CO₂-e emittiert. Für den ermittelten IST-Zustand wurden jährlich Emissionen von etwa 63.000 t/CO₂-e kalkuliert. Gegenüber dem Basisjahr 1990 konnten somit bereits ca. 14% der Emissionen eingespart werden.

© IfaS 2013 24

_

⁵⁷ Im Rahmen der retrospektiven Bilanzierung für das Basisjahr 1990 konnte auf keine Primärdatensätze zurückgegriffen werden. Der Stromverbrauch wurde anhand des Gesamtstromverbrauches von Rheinland-Pfalz (Vgl. Statistisches Landesamt Rheinland-Pfalz 2012: S. 18) über Einwohneräquivalente und Pro-Kopf-Verbrauchsentwicklungen von Rheinland-Pfalz auf 1990 rückgerechnet. Der Wärmeverbrauch der Privaten Haushalte konnte auf statistischer Grundlage zur Verteilung der Feuerungsanlagen und Wohngebäude (Zensus 1987) auf das Basisjahr zurückgerechnet werden. Die Rückrechnung für den Sektor Industrie & GHD erfolgte über die Erwerbstätigen am Arbeitsort (Vgl. AK ETR 2010). Dabei wurde von heutigen Verbrauchsdaten ausgegangen. Die Emissionen im Sektor Verkehr konnten durch die Zulassungen und Verbrauchswerte des Fahrzeugbestandes im Jahr 1990 berechnet werden. Verbrauchsdaten im Abfall- und Abwasserbereich wurden auf Grundlage der Landesstatistiken (Vgl. Ministerium für Umwelt, Forsten und Verbraucherschutz o.J.: S. 13 ff. und Statistisches Landesamt Rheinland-Pfalz 2012: S.4) in diesem Bereich auf 1990 rückgerechnet.

Große Einsparungen entstanden vor allem im Strombereich, welche sowohl auf den Ausbau der Photovoltaik- und Biogasanlagen als auch auf eine bundesweite Verbesserung des anzusetzenden Emissionsfaktors im Stromsektor zurückzuführen sind.⁵⁸ Im Stromsektor kann demnach von einer Reduktionsentwicklung von ca. 32% ausgegangen werden.

Insgesamt stellt der Wärmebereich derzeit mit ca. 43% den größten Verursacher der Treibhausgasemissionen dar und bietet den größten Ansatzpunkt für Einsparungen, welche im weiteren Verlauf des Klimaschutzkonzeptes (insbesondere im Maßnahmenkatalog) erläutert werden.

2.2 Energieeffizienz

In der Verbandsgemeinde Hauenstein befinden sich zum Jahr 2010 insgesamt 3.296 Wohngebäude mit einer Wohnfläche von ca. 500.000 m².⁵⁹ Die Gebäudestruktur teilt sich in 78% Einfamilienhäuser, 19% Zweifamilienhäuser und 3% Mehrfamilienhäuser.

Die folgende Tabelle gibt einen Überblick des Wohngebäudebestandes der VG (nach Baualtersklassen unterteilt).

Tab. 2-3: Wohngebäudebestand der VG Hauenstein nach Baualtersklassen⁶⁰

Altersklasse	Prozentualer Anteil	Wohngebäude nach Altersklassen	Davon Ein- und Zweifamilienhäuser	Davon Mehrfamilienhäuser
bis 1918	15,21%	501	484	17
1919 - 1948	12,78%	421	407	14
1949 - 1978	42,63%	1.405	1.357	48
1979 - 1990	14,80%	488	471	17
1991 - 2000	10,72%	353	341	12
2001 - Heute	3,86%	127	123	4
Gesamt	100%	3.296	3.184	112

Insgesamt existieren in der Verbandsgemeinde 2.735 Primärheizer und 1.246 Sekundärheizer (z. B. Holzeinzelöfen). Die Verteilung der Heizenergieanlagen ist in nachfolgender Tabelle dargestellt.

⁵⁸ Für das Jahr 1990 wurde ein CO₂-e-Faktor von 683 g/kWh exklusive der Vorketten berechnet. Berechnungsgrundlage ist an dieser Stelle Gemis 4.7 in Anlehnung an die Kraftwerksstruktur zur Stromerzeugung im Jahr 1990 (Vgl. BMU 2010)
⁵⁹ Vgl. Statistisches Landesamt Rheinland-Pfalz, 2010

⁶⁰ Vğl. Destatis, schriftliche Mitteilung von Frau Leib-Manz (Bereich Bautätigkeiten), Verteilung innerhalb der Baualtersklassen – Tabelle zur Aufteilung des Deutschen Wohngebäudebestandes nach Bundesländern und Baualtersklassen, am 15.09.2010.

Tab. 2-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträger

Energieträger	Primärheizer	Sekundärheizer
Öl	2.350	378
Gas	347	7
Strom	38	173
Kohle, Holz		688
Summe	2.735	1.246
Gesamt	3.	981

Außerdem gibt es in der VG noch 31 Wärmepumpen und durch das Marktanreizprogramm geförderte Biomasseanlagen mit insgesamt 1.559 kW installierter Leistung.

Es ergibt sich ein gesamter Heizwärmeverbrauch der privaten Wohngebäude innerhalb der Verbandsgemeinde von derzeit 99 GWh/a.

Insbesondere bei veralteten Heizungsanlagen ist ein hohes Einsparpotenzial vorhanden. Folgende Tabelle stellt die Anzahl der Anlagen für Öl- und Gasheizungen nach Baualtersklassen dar:

Tab. 2-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen

	Anzah	l der Heizanlage	n Öl und Gas nach	Baualtersklassen		
	bis 1978	1979-1982	1983-1988	1988-1997	1998-2008	ab 2009
ÖI	151	111	339	1.015	715	20
Gas	6	11	42	177	108	4

Eigene Liegenschaften:

Aufgrund eines Heizwärmeverbrauchs der auswertbaren 18 eigenen Gebäude in der Verbandsgemeinde (siehe Tab. 2-6) von 1.000 MWh im Jahr 2011 (bei 12.000 m² Nutzfläche), wurden für die einzelnen Gebäude der spezifische Heizwärmeverbrauch in kWh/(m²*a) ermittelt und in folgender Abbildung dargestellt.

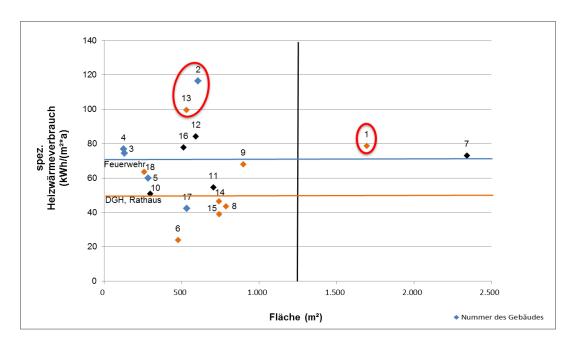


Abb. 2-5: VG Hauenstein – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche

Tab. 2-6: Übersicht Öffentliche Liegenschaften

 Nr. Öffentliche Liegenschaften 1 Rathaus Hauenstein 2 Feuerwehrgerätehaus Hauenstein 3 Feuerwehrgerätehaus Hinterweidenthal 4 Feuerwehrgerätehaus Lug 5 Feuerwehrgerätehaus Spirkelbach 6 Dorfgemeinschaftshaus Dimbach 7 Schuhmuseum 8 Jugendzentrum Hauenstein 9 Haus des Gastes Hauenstein 10 Friedhofshalle Hauenstein
 Feuerwehrgerätehaus Hauenstein Feuerwehrgerätehaus Hinterweidenthal Feuerwehrgerätehaus Lug Feuerwehrgerätehaus Spirkelbach Dorfgemeinschaftshaus Dimbach Schuhmuseum Jugendzentrum Hauenstein Haus des Gastes Hauenstein
 Feuerwehrgerätehaus Hinterweidenthal Feuerwehrgerätehaus Lug Feuerwehrgerätehaus Spirkelbach Dorfgemeinschaftshaus Dimbach Schuhmuseum Jugendzentrum Hauenstein Haus des Gastes Hauenstein
 4 Feuerwehrgerätehaus Lug 5 Feuerwehrgerätehaus Spirkelbach 6 Dorfgemeinschaftshaus Dimbach 7 Schuhmuseum 8 Jugendzentrum Hauenstein 9 Haus des Gastes Hauenstein
 5 Feuerwehrgerätehaus Spirkelbach 6 Dorfgemeinschaftshaus Dimbach 7 Schuhmuseum 8 Jugendzentrum Hauenstein 9 Haus des Gastes Hauenstein
 6 Dorfgemeinschaftshaus Dimbach 7 Schuhmuseum 8 Jugendzentrum Hauenstein 9 Haus des Gastes Hauenstein
7 Schuhmuseum8 Jugendzentrum Hauenstein9 Haus des Gastes Hauenstein
8 Jugendzentrum Hauenstein 9 Haus des Gastes Hauenstein
9 Haus des Gastes Hauenstein
10 Friedhofshalle Hauenstein
10 I Houndishand Hadenstein
11 Wohngebäude Hauenstein
12 ehem. Rathaus Hinterweidenthal
13 Gemeindehalle Lug
14 Dorfgemeinschaftshaus Spirkelbach
15 Altes Rathaus Wilgartswiesen
16 Wohngebäude Wilgartswiesen
17 Feuerwehrgerätehaus Wilgartswiesen
18 Dorfgemeinschaftshaus Hofstätten

Tab. 2-7: Gebäude mit hohen Wärmeverbräuchen

Nr.	Gebäude	BGF (m²)	Verbrauch (kWh/a)
1	Rathaus Hauenstein	1.695	170.374
2	Feuerwehrgerätehaus Hauenstein	607	90.245
13	Gemeindehalle Lug	531	67.540

Die Gesamtleistung der 34 Heizungsanlagen beträgt 2.457 kW und verteilt sich auf die einzelnen Energieträger wie in folgender Tabelle dargestellt:

Tab. 2-8: Leistung der Heizungsanlagen nach Energieträger

Energieträger	Anzahl	Leistung (kW)
Öl	7	481
Gas	24	1.587
Flüssiggas	2	49
Pellets	1	340
Summe	34	2.457

2.3 Erneuerbarer Energien

2.3.1 Photovoltaikpotenzial auf Freiflächen

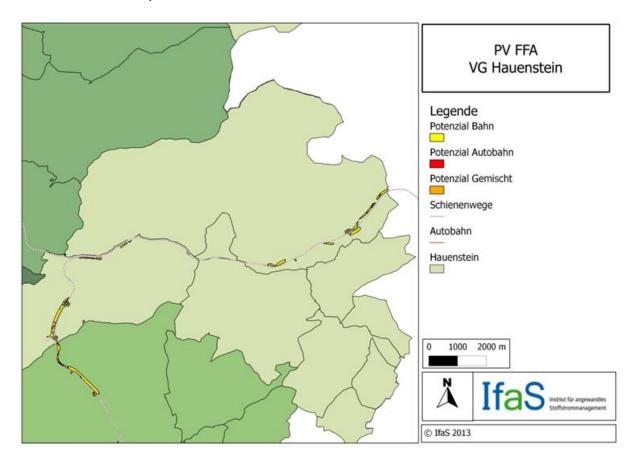


Abb. 2-6: Photovoltaik Freiflächenpotenzial VG Hauenstein

Tab. 2-9: Photovoltaik Freiflächenpotenzial VG Hauenstein

Ausbaupotenziale PV-FFA				
Standorttyp	Anzahl	Fläche	Install. Leistung ¹	Stromerträge ²
Standorttyp	(Stück)	(m²)	(kWp)	(MWh/a)
Schienenwege	24	353.000	14.100	12.700
1: 25 m²/kWP	2: 900 kWh*a/kWP			

2.3.2 Solarenergiepotenzial auf Dachflächen

Tab. 2-10: Solarenergiepotenzial auf Dachflächen VG Hauenstein

Ausbaupotenziale Solarenergie auf Dachflächen				
Photovoltaik		Solarthermie		
Installierbare Leistung ¹ (kWp)	Stromerträge (MWh/a)	Kollektorfläche ² (m²)	Wärmeerträge ³ (MWh/a)	Heizöläquivalente ⁴ (I)
28.000	24.500	52.000	19.100	2.246.000

- 1) 7 m² pro kWp Dickschicht/12,5 m² pro kWp Dünnschicht
- 2) 14 m² Solarthermie pro Dachfläche
- 3) Ertrag von 350 kWh/m² Solarthermie
- 4) Verdrängung Ölheizung

5) Techn. Potenzial - Bestand = Ausbaupotenzial

Bestand ST: Angaben der BAFA zu geförderten Anlagen

Bestand PV: Angaben aus EEG Anlagenregister 2011

Werte auf volle hundert gerundet

2.3.3 Windenergiepotenzial

Tab. 2-11: Windenergiepotenzial VG Hauenstein

Ausbaupotenziale Windenergie				
Potenzialfläche (ha)	Anteil (%)	mögliche WEA	Install. Leistung (MW)	Stromerträge (GWh/a)
1.811	15	126	289,8	609

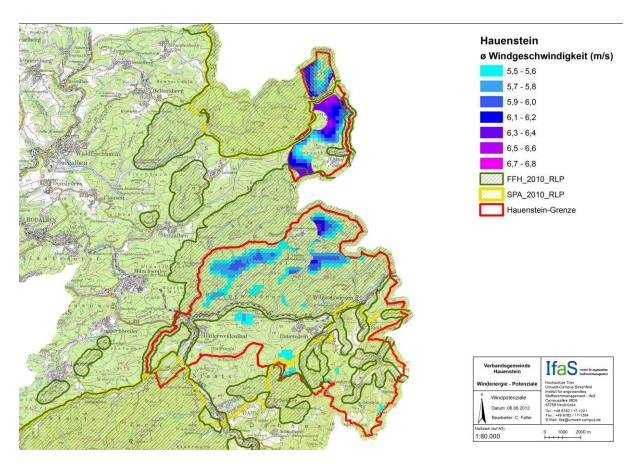


Abb. 2-7: Windenergiepotenzial VG Hauenstein

2.3.4 Geothermiepotenzial

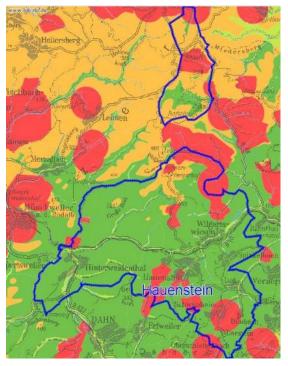


Abb. 2-8: Geothermiepotenzial der VG Hauenstein

Die Verbandsgemeinde Hauenstein liegt zum größten Teil auf unkritischem Gebiet. Es befindet sich lediglich ein kritisches Gebiet im östlichen Teil der Ortsgemeinde Schwanheim und im westlichen Teil der Ortsgemeinde Dimbach. Die restlichen kritischen Bereiche liegen außerhalb von Ortsgemeinden auf Wald- und Wiesengebieten.

2.3.5 Biomassepotenzial

Tab. 2-12: Biomassepotenzial VG Hauenstein

Ausbaupotenziale Biomasse								
Festbrennstoffe Fortst	Festbrennstoffe aus Ackerflächen	Festbrennstoffe aus Grünschnitt und Landschaftspfle	aus landwirt.	Biogassubstrate aus Ackerflächen	Biogassubstrate aus Dauergrünland	Biogassubstrate organische Abfälle	Gesamt	
[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	
25.890	0	1.885	101	0	1.165	648	29.689	

2.3.6 Wasserkraftpotenzial

Entfällt

3 Verbandsgemeinde Pirmasens-Land

3.1 Energie- und Treibhausgasbilanzierung (Startbilanz)

Um Klimaschutzziele innerhalb eines Betrachtungsraumes quantifizieren zu können, ist es unerlässlich, die Energieversorgung, den Energieverbrauch sowie die unterschiedlichen Energieträger zu bestimmen. Die Analyse bedarf der Berücksichtigung einer fundierten Datengrundlage und muss sich darüber hinaus statistischer Berechnungen⁶¹ bedienen, da keine vollständige Erfassung der Verbrauchs- und Produktionsdaten für die Verbandsgemeinde Pirmasens-Land vorliegt.

Die Betrachtung der Energiemengen bezieht sich im Rahmen des Konzeptes auf die Form der Endenergie (z. B. Heizöl, Holzpellets, Strom). Die verwendeten Emissionsfaktoren beziehen sich auf die relevanten Treibhausgase CO₂, CH₄ sowie N₂O und werden als CO₂-Äquivalente⁶² (CO₂e) ausgewiesen. Die Faktoren stammen aus dem Globalen Emissions-Modell integrierter Systeme (GEMIS) in der Version 4.7⁶³ und sind als Anhang (Erläuterung zu den Wirkungsanalysen) zur Einsicht hinterlegt. Sie beziehen sich ebenfalls auf den Endenergieverbrauch und berücksichtigen keine Vorketten z. B. aus der Anlagenproduktion oder der Brennstoffbereitstellung. Das vorliegende Konzept bezieht sich im Wesentlichen systematisch auf das Gebiet der Verbandsgemeinde. Dementsprechend ist die Energie- und Treibhausgasbilanzierung nach der Methodik einer "endenergiebasierten Territorialbilanz" aufgebaut, welche im Praxisleitfaden "Klimaschutz in Kommunen" für die Erstellung von Klimaschutzkonzepten nahegelegt wird.⁶⁴ Die Betrachtung der Energiemengen bezieht sich vor diesem Hintergrund auf die Form der Endenergie.⁶⁵

Im Folgenden werden die Gesamtenergieverbräuche sowie die derzeitigen Energieversorgungsstrukturen der Verbandsgemeinde Pirmasens-Land im IST-Zustand analysiert.

3.1.1 Analyse des Gesamtenergieverbrauches und der Energieversorgung

Mit dem Ziel, den Energieverbrauch und die damit einhergehenden Treibhausgasemissionen der Verbandsgemeinde im IST-Zustand abzubilden, werden an dieser Stelle die Bereiche

© IfaS 2013 33

_

⁶¹ Im Klimaschutzkonzept erfolgen insbesondere die Berechnungen für das ausgewählte Basisjahr 1990 anhand statistischer Daten.

 $^{^{62}}$ N_2 O und CH₄ wurden in CO₂-Äquivalente umgerechnet (Vgl. IPCC 2007: S. 36)

⁶³ Vgl. Fritsche und Rausch 2011

⁶⁴ Vgl. Difu 2011; Der Klimaschutzleitfaden spricht Empfehlungen zur Bilanzierungsmethodik im Rahmen von Klimaschutzkonzepten aus. Das IfaS schließt sich im vorliegenden Fall dieser Methodik an, da die Empfehlungen des Praxisleitfadens unter anderem durch das Umweltbundesamt (UBA) sowie das Forschungszentrum Jülich GmbH (PTJ) fachlich unterstützt wurden.

⁶⁵ Des Weiteren ermöglicht die Betrachtung der Endenergie eine höhere Transparenz auch für fachfremde Betroffene und Interessierte, da ein Bezug eher zur Endenergie besteht und keine Rückrechnung von Endenergie zur Primärenergie nachvollzogen werden muss.

Strom, Wärme, Verkehr sowie Abfall und Abwasser hinsichtlich ihrer Verbrauchs- und Versorgungsstrukturen analysiert.66

3.1.1.1 Gesamtstromverbrauch und Stromerzeugung

Zur Ermittlung des Stromverbrauches des Betrachtungsgebietes wurden die zur Verfügung gestellten Daten des zuständigen Netzbetreibers⁶⁷ über die gelieferten und durchgeleiteten Strommengen an private, kommunale sowie gewerbliche und industrielle Abnehmer herangezogen. 68 Die vorliegenden Verbrauchsdaten gehen auf das Jahr 2011 zurück und weisen einen Gesamtstromverbrauch von rund 33.000 MWh/a für die Verbandsgemeinde aus.

Mit einem jährlichen Verbrauch von ca. 25.000 MWh weist die Verbrauchergruppe Private Haushalte den höchsten Stromverbrauch der Verbandsgemeinde auf. Im Bereich Industrie, Gewerbe Handel und Dienstleistungen werden jährlich ca. 7.000 MWh benötigt. Gemessen am Gesamtstromverbrauch stellen die kommunalen Liegenschaften⁶⁹ mit einer jährlichen Verbrauchsmenge von etwa 1.400 MWh erwartungsgemäß die kleinste Verbrauchsgruppe des Betrachtungsgebietes dar (siehe dazu Abb. 3-3). Heute werden bilanziell betrachtet ca. 22% des Gesamtstromverbrauches der Verbandsgemeinde aus erneuerbarer Stromproduktion gedeckt. Damit liegt der Anteil Erneuerbarer Energien an der Stromproduktion über dem Bundesdurchschnitt von 20,3% im Jahr 2011.70 Die lokale Stromproduktion speist sich vor allem aus der Nutzung von Windkraft-, Photovoltaik- und Biogasanlagen. Die folgende Abbildung zeigt den derzeitigen Beitrag der Erneuerbaren Energien im Verhältnis zum Gesamtstromverbrauch auf:

© IfaS 2013 34

⁶⁶ Detailangaben zu den Berechnungsparametern sind der Erläuterung zu den Wirkungsanalysen im Anhang zu entnehmen.

⁶⁷ In diesem Fall ist der zuständige Netzbetreiber für den Landkreis Südwestpfalz: Für die A-Gemeinden die gemeindeeigenen Elektrizitätswerke; für alle anderen die Pfalzwerke AG.

Die Daten wurden in folgender Aufteilung übermittelt: Straßenbeleuchtung, Speicherheizung, Gewerbe, öffentliche Liegenschaften und Private Haushalte.

Auf Verbandsgemeindeebene werden nur die kommunalen Liegenschaften betrachtet (ohne die Kreiseigenen).

⁷⁰ Vgl. BMU 2012: S. 12

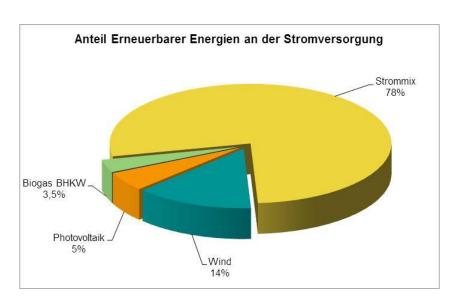


Abb. 3-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Pirmasens-Land

3.1.1.2 Gesamtwärmeverbrauch und Wärmeerzeugung

Die Ermittlung des Gesamtwärmebedarfes auf dem Gebiet der Verbandsgemeinde stellt sich im Vergleich zur Stromverbrauchsanalyse deutlich schwieriger dar. Neben konkreten Verbrauchszahlen für leitungsgebundene Wärmeenergie (Erdgas) kann in der Gesamtbetrachtung aufgrund einer komplexen und zum Teil nicht leitungsgebundenen Versorgungsstruktur lediglich eine Annäherung an tatsächliche Verbrauchswerte erfolgen. Zur Ermittlung des Wärmebedarfes auf Basis leitungsgebundener Energieträger wurden Verbrauchsdaten über die Erdgasliefermengen im Verbrauchsgebiet der Verbandsgemeinde für das Jahr 2011 des Netzbetreibers⁷¹ herangezogen. Ferner wurden für die Ermittlung des Wärmebedarfes im privaten Wohngebäudebestand die Daten des Zensus 87⁷² und der Baufertigstellungsstatistik 1990 bis 2010⁷³ betrachtet und ausgewertet (vgl. dazu Kapitel 3.2).

Des Weiteren wurden die durch das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) gelieferten Daten über geförderte innovative Erneuerbare-Energien-Anlagen (Solarthermie-Anlagen⁷⁴, mechanisch beschickte Bioenergieanlagen⁷⁵, Wärmepumpen⁷⁶, KWK-Anlagen⁷⁷) bis zum Jahr 2012 herangezogen.

Insgesamt konnte für die Verbandsgemeinde ein jährlicher Gesamtwärmeverbrauch von rund 136.000 MWh ermittelt werden.⁷⁸

© IfaS 2013 35

-

⁷¹ In diesem Fall ist der zuständige Netzbetreiber für den gesamten Landkreis: Die Pfalzgas GmbH

⁷² Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: a

⁷³ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: b und c

⁷⁴ Vgl. Webseite Solaratlas

⁷⁵ Vgl. Webseite Biomasseatlas

⁷⁶ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J. c

⁷⁷ Vgl. Datenübermittlung Alfred Smuck (BAFA) vom 13.11.2012

⁷⁸ Der Gesamtwärmeverbrauch setzt sich aus folgenden Punkten zusammen: Angaben zu gelieferten Gasmengen der Netzbetreiber, Hochrechnung des Wärmeverbrauches im privaten Wohngebäudesektor, Angaben der Verwaltung zu kommunalen Liegenschaften sowie statistischen Angaben über den Ölverbrauch der Industrie im Betrachtungsgebiet.

Mit einem jährlichen Anteil von ca. 97% des Gesamtwärmeverbrauches (ca. 132.000°MWh/a) stellen die Privaten Haushalte mit Abstand den größten Wärmeverbraucher der Verbandsgemeinde dar. An zweiter Stelle steht die Verbrauchergruppe Industrie, Gewerbe Handel und Dienstleistungen mit einem Anteil von ca. 1,5% (ca. 2.500°MWh/a). Kommunale Liegenschaften dagegen sind nur zu ca. 1,5% (ca. 2.000 MWh/a) am Gesamtwärmeverbrauch beteiligt.

Derzeit können etwa 6% des Gesamtwärmeverbrauches über erneuerbare Energieträger abgedeckt werden. Damit liegt der Anteil Erneuerbarer Energien an der Wärmebereitstellung unter dem Bundesdurchschnitt, der im Jahr 2011 bei 11% lag.⁷⁹ In der Verbandsgemeinde Pirmasens-Land beinhaltet die Wärmeproduktion aus Erneuerbaren Energieträgern vor allem die Verwendung von Biomasse-Festbrennstoffen, solarthermischen Anlagen und Wärmepumpen. Die folgende Darstellung verdeutlicht, dass die Wärmeversorgung im IST-Zustand überwiegend auf fossilen Energieträgern basiert.

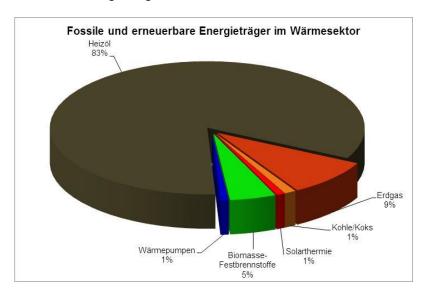


Abb. 3-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Pirmasens-Land

3.1.1.3 Energieverbrauch im Sektor Verkehr

Im Vergleich zum Energieverbrauch und dem Ausstoß der THG-Emissionen von 1990 sind diese in 2012 nur um 6% gestiegen obwohl sich der Fahrzeugbestand im gleichen Zeitraum um 20% erhöht hat. Der geringe Anstieg des Energieverbrauchs und der THG-Emissionen ist auf Effizienzgewinne zurückzuführen. Bereits 2020 wird eine Reduktion um 5% (Energie) sowie 34% (Emissionen) durch effizientere Technologien, biogene Kraftstoffe und die Zielvorgabe der Bundesregierung von "1 Millionen Elektrofahrzeuge bis 2020 auf Deutschlands Straßen" erfolgen.

© IfaS 2013 36

7/

⁷⁹ Vgl. BMU 2012: S. 14

Dieser Trend wird sich in den Folgejahren fortsetzen, sodass der Endenergieverbrauch bis zum Jahr 2050 auf jährlich rund 46.989 MWh/a fällt sowie die THG-Emissionen auf 0 t/a CO₂. Dies entspricht einer Reduktion von insgesamt ca. 59% (Energie) und 100% (Emissionen) gegenüber dem Basisjahr 1990.

Tab. 3-1: Energiebilanz der VG Pirmasenser Land

Gesamt	1990	2012	2020	2030	2040	2050
Gesaint	MWh	MWh	MWh	MWh	MWh	MWh
Fossile Kraftstoffe	113.766,43	120.335,77	101.489,04	78.628,70	36.314,88	0,00
- Diesel	71.741,50	75.379,12	57.867,03	46.716,57	21.930,15	0,00
- Ottokraftstoff	42.024,93	42.246,55	39.853,10	29.045,62	13.588,39	0,00
- Erdgas	0,00	23,47	1.447,00	1.067,00	583,87	0,00
- Flüssiggas	0,00	2.686,64	2.321,91	1.799,51	212,47	0,00
Erneuerbare Kraftstoffe	0,00	0,00	6.975,01	15.846,80	32.571,43	46.989,13
- Bio-/Windgas	0,00	0,00	3.803,08	6.042,44	9.469,61	8.521,41
- Strom	0,00	0,00	3.171,93	9.804,35	23.101,82	38.467,71
Gesamt	113.766,43	120.335,77	108.464,05	94.475,50	68.886,31	46.989,13
Differenz zu 1990		6.569,34	-5.302,38	-19.290,94	-44.880,12	-66.777,31
Veränderung in Prozent		6%	-5%	-17%	-39%	-59%

Tab. 3-2: Emissionsbilanz der VG Pirmasenser Land

Gesamt	1990	2012	2020	2030	2040	2050
Gesam	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2
Fossile Kraftstoffe	30.236,17	31.943,42	19.826,50	14.424,12	6.381,18	0,00
- Diesel	20.215,32	21.240,33	10.599,12	7.862,08	3.684,49	0,00
- Ottokraftstoff	10.020,84	10.069,68	8.329,55	5.906,16	2.525,47	0,00
- Erdgas	0,00	4,74	313,52	222,85	115,57	0,00
- Flüssiggas	0,00	628,67	584,31	433,03	55,65	0,00
Erneuerbare Kraftstoffe	0,00	0,00	0,00	0,00	0,00	0,00
- Bio-/Windgas	0,00	0,00	0,00	0,00	0,00	0,00
- Strom	0,00	0,00	0,00	0,00	0,00	0,00
Gesamt	30.236,17	31.943,42	19.826,50	14.424,12	6.381,18	0,00
Differenz zu 1990		1.707,26	-10.409,67	-15.812,05	-23.854,98	-30.236,17
Veränderung in Prozent		6%	-34%	-52%	-79%	-100%

3.1.1.4 Energieverbrauch im Sektor Abfall / Abwasser

Die Emissionen und Energieverbräuche des Sektors Abfall und Abwasser sind im Kontext des vorliegenden integrierten Klimaschutzkonzeptes sowie der dazugehörigen Treibhausgasbilanz als sekundär zu bewerten und werden aus diesem Grund größtenteils statistisch abgeleitet. Auf den Bereich Abfall und Abwasser ist weniger als 1% der Gesamtemissionen zurückzuführen.⁸⁰

Der Energieverbrauch im Bereich der Abfallwirtschaft lässt sich zum einen auf die Behandlung der anfallenden Abfallmengen und zum anderen auf den Abfalltransport zurückführen. Abgeleitet aus den verschiedenen Abfallfraktionen im Entsorgungsgebiet fielen in der Verbandgemeinde Pirmasens-Land⁸¹ im Jahr 2011 insgesamt ca. 5.000 t Abfall an.

© IfaS 2013 37

⁸⁰ Bezogen auf die nicht-energetischen Emissionen. Die Emissionen aus dem stationären Energieverbrauch und dem Verkehr sind bereits in den entsprechenden Kapiteln enthalten und werden nicht separat für den Abfall- und Abwasserbereich dargestellt.

Vgl. Ministerium für Wirtschaft, Klimaschutz, Energie und Landesplanung Rheinland-Pfalz 2012

Die durch die Abfallbehandlung entstehenden THG-Emissionen im stationären- sowie im Transportbereich, finden sich im Rahmen der Energie- und Treibhausgasbilanz im Sektor Strom, Wärme und Verkehr wieder. Das deutschlandweite Verbot einer direkten Mülldeponierung seit 2005 und die gesteigerte Kreislaufwirtschaft führten dazu, dass die Emissionen, die dem Abfallsektor zuzurechnen waren, stark gesunken sind. Die Abfallentsorgung in Müllverbrennungsanlagen erfolgt vollständig unter energetischer Nutzung, sodass derzeit lediglich die Emissionen der Bio- und Grünabfälle mit einem Faktor von 17 kg CO₂e/t Abfall⁸² berechnet werden. Für das Betrachtungsgebiet konnte in dieser Fraktion eine Menge von 701 t/a ermittelt werden. Demnach werden jährlich ca. 12 t CO₂-e verursacht.

Die Energieverbräuche zur Abwasserbehandlung sind ebenfalls im stationären Bereich der Bilanz eingegliedert (Strom und Wärme) und fließen auch in diesen Sektoren in die Treibhausgasbilanz ein. Zusätzliche Emissionen entstehen aus der Abwasserreinigung (N₂O durch Denitrifikation) und der anschließenden Weiterbehandlung des Klärschlamms (stoffliche Verwertung). Gemäß den Einwohnerwerten (Berechnung der N₂O-Emissionen) für das Betrachtungsjahr 2011 sowie Angaben des Statistischen Landesamtes Rheinland-Pfalz zur öffentlichen Klärschlammentsorgung⁸³ wurden für den IST-Zustand der Abwasserbehandlung Emissionen in Höhe von ca. 242 t CO₂-e ermittelt.

3.1.2 Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern

Der Gesamtenergieverbrauch bildet sich als Summe der zuvor beschriebenen Teilbereiche und beträgt im abgeleiteten "IST-Zustand"⁸⁴ ca. 289.000 MWh/a. Der Anteil der Erneuerbaren Energien am stationären Verbrauch⁸⁵ (exklusive Verkehr) liegt in der Verbandsgemeinde durchschnittlich bei 10%. Die nachfolgende Grafik zeigt einen Gesamtüberblick über die derzeitigen Energieverbräuche auf, unterteilt nach Energieträgern und Sektoren:

⁸² Vgl. Difu 2011: S. 266

 $^{^{\}rm 83}$ Vgl. Statistisches Landesamt Rheinland-Pfalz 2012

An dieser Stelle ist zu erwähnen, dass sich die Datenquellen der verschiedenen Bausteine zur Errechnung des Gesamtenergieverbrauches auf unterschiedliche Bezugsjahre beziehen. Da kein einheitliches Bezugsjahr über alle Datenquellen hinweg angesetzt werden konnte, hat der Konzeptersteller jeweils den aktuellsten Datensatz verwandt. In den betroffenen Verbrauchsbereichen wurde davon ausgegangen, dass sich die Verbrauchsmengen in den letzten Jahren nicht signifikant verändert haben. Hier wird der Vergleich mit dem stationären Energieverbrauch herangezogen, da im IST-Zustand mit der gegebenen Statistik keine erneuerbaren Energieträger als Treibstoff zu ermitteln waren.

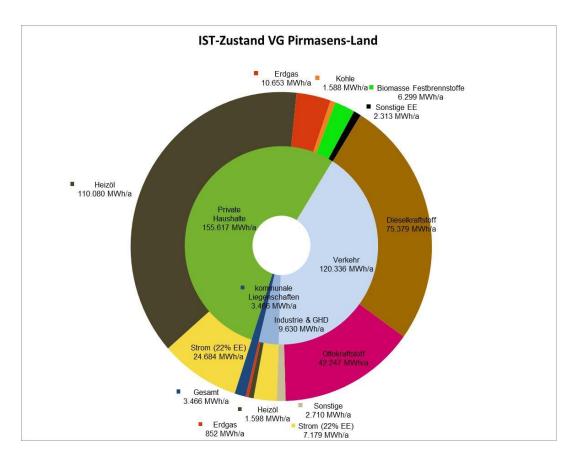


Abb. 3-3: Gesamtenergieverbrauch der Verbandsgemeinde Pirmasens-Land im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren

Die zusammengefügte Darstellung der Energieverbräuche nach Verbrauchergruppen lässt erste Rückschlüsse über die dringlichsten Handlungssektoren des Klimaschutzkonzeptes zu. Das derzeitige Versorgungssystem ist augenscheinlich durch den Einsatz fossiler Energieträger geprägt. Für die regenerativen Energieträger ergibt sich demnach ein großer Ausbaubedarf. Des Weiteren lässt sich ableiten, dass die kommunalen Liegenschaften und Einrichtungen des Betrachtungsgebietes aus energetischer Sicht nur in geringem Maße zur Bilanzoptimierung beitragen können. Dennoch wird die Optimierung dieses Bereiches – insbesondere in Hinblick auf die Vorbildfunktion der Verbandsgemeinde gegenüber den weiteren Verbrauchergruppen – als besonders notwendig erachtet.

Den größten Energieverbrauch mit ca. 156.000.°MWh/a verursachen in der Verbandsgemeinde Pirmasens-Land die Privaten Haushalte. Folglich entsteht hier auch der größte Handlungsbedarf, welcher sich vor allem im Einsparpotenzial der fossilen Wärmeversorgung widerspiegelt. Zweitgrößte Verbrauchergruppe ist der Verkehrssektor mit einem ermittelten Verbrauch von ca. 120.000°MWh/a. Im Hinblick auf die Verbrauchsgruppe Industrie und GHD entsteht ein Energieverbrauch von ca. 9.600°MWh/a. Die Verbandsgemeinde kann auf diese Verbrauchssektoren einen indirekten Einfluss nehmen, um die Energiebilanz und die damit einhergehenden ökologischen und ökonomischen Effekte zu verbessern.

3.1.3 Treibhausgasemissionen der Verbandsgemeinde Pirmasens-Land

Ziel der Treibhausgasbilanzierung auf kommunaler Ebene ist es, spezifische Referenzwerte für zukünftige Emissionsminderungsprogramme zu erheben. In der vorliegenden Bilanz werden auf Grundlage der zuvor erläuterten verbrauchten Energiemengen die territorialen Treibhausgasemissionen (CO₂e) in den Bereichen Strom, Wärme, Verkehr sowie Abfall und Abwasser quantifiziert. Die folgende Darstellung bietet einen Gesamtüberblick der relevanten Treibhausgasemissionen der Verbandsgemeinde, welche sowohl für den IST-Zustand als auch für das Basisjahr 1990 errechnet wurden.

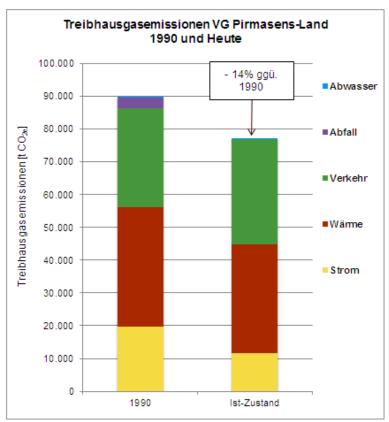


Abb. 3-4: Treibhausgasemissionen der Verbandsgemeinde Pirmasens-Land (1990 und IST-Zustand)

Im Referenzjahr 1990 wurden aufgrund des Energieverbrauches⁸⁶ der Verbandsgemeinde ca. 90.000°t CO₂-e emittiert. Für den ermittelten IST-Zustand wurden jährlich Emissionen von etwa 77.000 t/CO₂-e kalkuliert. Gegenüber dem Basisjahr 1990 konnten somit bereits ca. 14% der Emissionen eingespart werden.

© IfaS 2013 40

.

Im Rahmen der retrospektiven Bilanzierung für das Basisjahr 1990 konnte auf keine Primärdatensätze zurückgegriffen werden. Der Stromverbrauch wurde anhand des Gesamtstromverbrauches von Rheinland-Pfalz (Vgl. Statistisches Landesamt Rheinland-Pfalz 2012: S. 18) über Einwohneräquivalente und Pro-Kopf-Verbrauchsentwicklungen von Rheinland-Pfalz auf 1990 rückgerechnet. Der Wärmeverbrauch der Privaten Haushalte konnte auf statistischer Grundlage zur Verteilung der Feuerungsanlagen und Wohngebäude (Zensus 1987) auf das Basisjahr zurückgerechnet werden. Die Rückrechnung für den Sektor Industrie & GHD erfolgte über die Erwerbstätigen am Arbeitsort (Vgl. AK ETR 2010). Dabei wurde von heutigen Verbrauchsdaten ausgegangen. Die Emissionen im Sektor Verkehr konnten durch die Zulassungen und Verbrauchswerte des Fahrzeugbestandes im Jahr 1990 berechnet werden. Verbrauchsdaten im Abfall- und Abwasserbereich wurden auf Grundlage der Landesstatistiken (Vgl. Ministerium für Umwelt, Forsten und Verbraucherschutz o.J.: S. 13 ff. und Statistisches Landesamt Rheinland-Pfalz 2012: S.4) in diesem Bereich auf 1990 rückgerechnet.

Große Einsparungen entstanden vor allem im Strombereich, welche sowohl auf den Ausbau der Windkraft, Photovoltaik- und Biogasanlagen als auch auf eine bundesweite Verbesserung des anzusetzenden Emissionsfaktors im Stromsektor zurückzuführen sind.⁸⁷ Im Stromsektor kann demnach von einer Reduktionsentwicklung von ca. 41% ausgegangen werden.

Insgesamt stellt der Wärmebereich derzeit mit ca. 43% den größten Verursacher der Treibhausgasemissionen dar und bietet den größten Ansatzpunkt für Einsparungen, welche im weiteren Verlauf des Klimaschutzkonzeptes (insbesondere im Maßnahmenkatalog) erläutert werden.

3.2 Energieeffizienz

In der Verbandsgemeinde Pirmasens-Land befinden sich zum Jahr 2010 insgesamt 4.429 Wohngebäude mit einer Wohnfläche von ca. 670.000 m². ⁸⁸ Die Gebäudestruktur teilt sich in 70% Einfamilienhäuser, 25% Zweifamilienhäuser und 5% Mehrfamilienhäuser.

Die folgende Tabelle gibt einen Überblick des Wohngebäudebestandes der VG (nach Baualtersklassen unterteilt).

Tab. 3-3: Wohngebäudebestand der VG Pirmasens-Land nach Baualtersklassen⁸⁹

Altersklasse	Prozentualer Anteil	Wohngebäude nach Altersklassen	Davon Ein- und Zweifamilienhäuser	Davon Mehrfamilienhäuser
bis 1918	15,21%	674	639	34
1919 - 1948	12,78%	566	537	29
1949 - 1978	42,63%	1.888	1.792	96
1979 - 1990	14,80%	655	622	33
1991 - 2000	10,72%	475	451	24
2001 - Heute	3,86%	171	162	9
Gesamt	100%	4.429	4.203	226

Insgesamt existieren in der Verbandsgemeinde 4.451 Primärheizer und 1.366 Sekundärheizer (z. B. Holzeinzelöfen). Die Verteilung der Heizenergieanlagen ist in nachfolgender Tabelle dargestellt.

⁸⁷ Für das Jahr 1990 wurde ein CO₂-e-Faktor von 683 g/kWh exklusive der Vorketten berechnet. Berechnungsgrundlage ist an dieser Stelle Gemis 4.7 in Anlehnung an die Kraftwerksstruktur zur Stromerzeugung im Jahr 1990 (Vgl. BMU 2010)

⁸⁸ Vgl. Statistisches Landesamt Rheinland-Pfalz, 2010

Vgl. Destatis, schriftliche Mitteilung von Frau Leib-Manz (Bereich Bautätigkeiten), Verteilung innerhalb der Baualtersklassen – Tabelle zur Aufteilung des Deutschen Wohngebäudebestandes nach Bundesländern und Baualtersklassen, am 15.09.2010.

Tab. 3-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträger

Energieträger	Primärheizer	Sekundärheizer			
Öl	3.994	437			
Gas	390	16			
Strom	67	213			
Kohle, Holz		700			
Summe	4.451	1.366			
Gesamt	5.817				

Außerdem gibt es in der VG noch 64 Wärmepumpen und durch das Marktanreizprogramm geförderte Biomasseanlagen mit insgesamt 2.451 kW installierter Leistung.

Es ergibt sich ein gesamter Heizwärmeverbrauch der privaten Wohngebäude innerhalb der Verbandsgemeinde von derzeit 132 GWh/a.

Insbesondere bei veralteten Heizungsanlagen ist ein hohes Einsparpotenzial vorhanden. Folgende Tabelle stellt die Anzahl der Anlagen für Öl- und Gasheizungen nach Baualtersklassen dar:

Tab. 3-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen

Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen								
	bis 1978 1979-1982 1983-1988 1988-1997 1998-2008 ab 20							
ÖI	256	189	575	1.725	1.215	33		
Gas	6	12	47	199	121	4		

Eigene Liegenschaften:

Aufgrund eines Heizwärmeverbrauchs der auswertbaren 30 eigenen Gebäude in der Verbandsgemeinde (siehe Tab. 3-6) von 1.700 MWh im Jahr 2011 (bei 10.500 m² Nutzfläche), wurden für die einzelnen Gebäude der spezifische Heizwärmeverbrauch in kWh/(m²*a) ermittelt und in folgender Abbildung dargestellt.

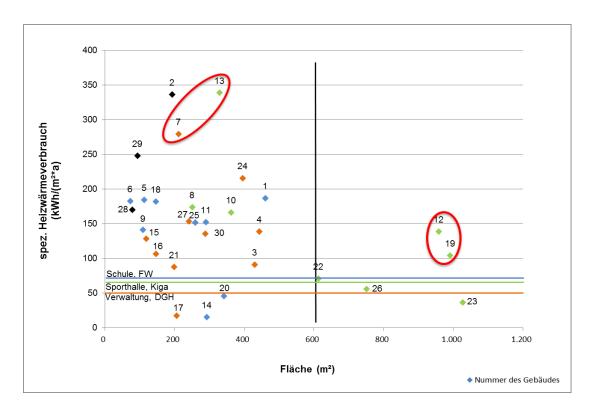


Abb. 3-5: VG Pirmasens-Land – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche

Tab. 3-6: Übersicht Öffentliche Liegenschaften

Nr.	Öffentliche Liegenschaften	Nr.	Öffentliche Liegenschaften
1	Grundschule Bottenbach	16	Gemeindehaus Langmühle
2	Ärzte- u. Bäderhaus	17	Gemeindehaus Glashütte
3	Bürgerhaus Eppenbrunn	18	Feuerwehr Obersimten
4	Haus des Gastes Eppenbrunn	19	Ruppertshalle
5	Feuerwehr Eppenbrunn	20	Feuerwehr Ruppertsweiler
6	Bauhof Eppenbrunn	21	Rathaus Ruppertsweiler
7	Gemeindehaus Hilst	22	Grenzlandhalle Schweix
8	Kindergarten Kroppen	23	Trualbhalle Trulben
9	Feuerwehr Kröppen	24	Altes Schulhaus Trulben
10	Kath. Kindergarten Lemberg	25	Feuerwehr Trulben
11	Feuerwehr Lemberg	26	Felsalbhalle
12	Freizeithalle Lemberg	27	Kulturzentrum Alte Kirche
13	Prot. Kindergarten Lemberg	28	Mietwohngebäude Vinningen
14	Bauhof Lemberg	29	Mietwohngebäude Vinningen
15	Gemeindehaus Salzwoog	30	Alte Schule Vinningen

Tab. 3-7: Gebäude mit hohen Wärmeverbräuchen

Nr.	Gebäude	BGF (m²)	Verbrauch (kWh/a)
7	Gemeindehaus Hilst	212	75.570
12	Freizeithalle Lemberg	958	170.042
13	Prot. Kindergarten Lemberg	329	142.605
19	Ruppertshalle	991	132.020

Die Gesamtleistung der 54 Heizungsanlagen beträgt 2.385 kW und verteilt sich auf die einzelnen Energieträger wie in folgender Tabelle dargestellt:

Tab. 3-8: Leistung der Heizungsanlagen nach Energieträger

Energieträger	Anzahl	Leistung (kW)
Öl	20	1.454
Gas	13	671
Strom	16	10
Flüssiggas	2	55
Pellets	2	195
Fernwärme	1	
Summe	54	2.385

3.3 Erneuerbarer Energien

3.3.1 Photovoltaikpotenzial auf Freiflächen

Entfällt

3.3.2 Solarenergiepotenziale auf Dachflächen

Tab. 3-9: Solarenergiepotenziale auf Dachflächen VG Pirmasens-Land

Ausbaupotenziale Solarenergie auf Dachflächen							
Photov	Solarthermie						
Installierbare Leistung ¹ (kWp)	Stromerträge (MWh/a)	Kollektorfläche ² (m²)	Wärmeerträge ³ (MWh/a)	Heizöläquivalente ⁴ (I)			
25.000	22.290	52.000	19.100	2.386.000			

- 1) 7 m² pro kWp Dickschicht/12,5 m² pro kWp Dünnschicht
- 2) 14 m² Solarthermie pro Dachfläche
- 3) Ertrag von 350 kWh/m² Solarthermie
- 4) Verdrängung Ölheizung

5) Techn. Potenzial - Bestand = Ausbaupotenzial

Bestand ST: Angaben der BAFA zu geförderten Anlagen

Bestand PV: Angaben aus EEG Anlagenregister 2011

Werte auf volle hundert gerundet

3.3.3 Windenergiepotenzial

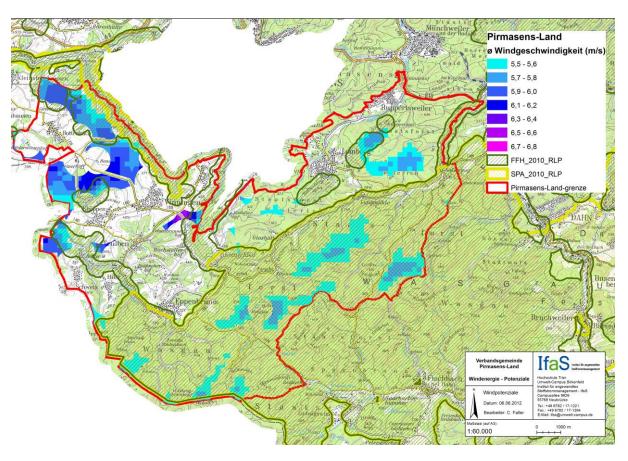
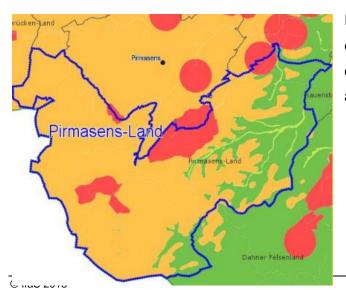



Abb. 3-6: Windenergiepotenzial VG Pirmasens-Land

Tab. 3-10: Windenergiepotenzial VG Pirmasens-Land

Ausbaupotenziale Windenergie							
Potenzialfläche (ha)	Anteil (%)	mögliche WEA	Install. Leistung (MW)	Stromerträge (GWh/a)			
2.090	17	145	333,5	702			

3.3.4 Geothermiepotenzial

In Pirmasens-Land ist im östlichen Teil ein unkritisches Gebiet zu erkennen, welches sich außerhalb von Ortsgemeinden auf Wald- und Wiesengebieten befindet.

46

Abb. 3-7: Geothermiepotenzial VG Pirmasens-Land

3.3.5 Biomassepotenzial

Tab. 3-11: Biomassepotenzial VG Pirmasens-Land

Ausbaupotenziale Biomasse								
Festbrenns Fortst	toffe Festbrenns aus Ackerfli		Biogassubstrate aus landwirt.	Biogassubstrate aus Ackerflächen	Biogassubstrate aus Dauergrünland	Biogassubstrate organische Abfälle	Gesamt	
[MWh/a	[MWh/a	a] [MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	
27.408	2.357	773	2.573	387	0	905	34.403	

3.3.6 Wasserkraftpotenzial

Entfällt

4 Verbandsgemeinde Rodalben

4.1 Energie- und Treibhausgasbilanzierung (Startbilanz)

Um Klimaschutzziele innerhalb eines Betrachtungsraumes quantifizieren zu können, ist es unerlässlich, die Energieversorgung, den Energieverbrauch sowie die unterschiedlichen Energieträger zu bestimmen. Die Analyse bedarf der Berücksichtigung einer fundierten Datengrundlage und muss sich darüber hinaus statistischer Berechnungen⁹⁰ bedienen, da keine vollständige Erfassung der Verbrauchs- und Produktionsdaten für die Verbandsgemeinde Rodalben vorliegt.

Die Betrachtung der Energiemengen bezieht sich im Rahmen des Konzeptes auf die Form der Endenergie (z. B. Heizöl, Holzpellets, Strom). Die verwendeten Emissionsfaktoren beziehen sich auf die relevanten Treibhausgase CO₂, CH₄ sowie N₂O und werden als CO₂-Äquivalente⁹¹ (CO₂e) ausgewiesen. Die Faktoren stammen aus dem Globalen Emissions-Modell integrierter Systeme (GEMIS) in der Version 4.7⁹² und sind als Anhang (Erläuterung zu den Wirkungsanalysen) zur Einsicht hinterlegt. Sie beziehen sich ebenfalls auf den Endenergieverbrauch und berücksichtigen keine Vorketten z. B. aus der Anlagenproduktion oder der Brennstoffbereitstellung. Das vorliegende Konzept bezieht sich im Wesentlichen systematisch auf das Gebiet der Verbandsgemeinde. Dementsprechend ist die Energie- und Treibhausgasbilanzierung nach der Methodik einer "endenergiebasierten Territorialbilanz" aufgebaut, welche im Praxisleitfaden "Klimaschutz in Kommunen" für die Erstellung von Klimaschutzkonzepten nahegelegt wird.⁹³ Die Betrachtung der Energiemengen bezieht sich vor diesem Hintergrund auf die Form der Endenergie.⁹⁴

Im Folgenden werden die Gesamtenergieverbräuche sowie die derzeitigen Energieversorgungsstrukturen der Verbandsgemeinde Rodalben im IST-Zustand analysiert.

4.1.1 Analyse des Gesamtenergieverbrauches und der Energieversorgung

Mit dem Ziel, den Energieverbrauch und die damit einhergehenden Treibhausgasemissionen der Verbandsgemeinde im IST-Zustand abzubilden, werden an dieser Stelle die Bereiche

© IfaS 2013 48

_

⁹⁰ Im Klimaschutzkonzept erfolgen insbesondere die Berechnungen für das ausgewählte Basisjahr 1990 anhand statistischer Daten

 $^{^{91}}$ N₂O und CH₄ wurden in CO₂-Äquivalente umgerechnet (Vgl. IPCC 2007: S. 36)

⁹² Vgl. Fritsche und Rausch 2011

Vgl. Difu 2011; Der Klimaschutzleitfaden spricht Empfehlungen zur Bilanzierungsmethodik im Rahmen von Klimaschutzkonzepten aus. Das IfaS schließt sich im vorliegenden Fall dieser Methodik an, da die Empfehlungen des Praxisleitfadens unter anderem durch das Umweltbundesamt (UBA) sowie das Forschungszentrum Jülich GmbH (PTJ) fachlich unterstützt wurden.

⁹⁴ Des Weiteren ermöglicht die Betrachtung der Endenergie eine höhere Transparenz auch für fachfremde Betroffene und Interessierte, da ein Bezug eher zur Endenergie besteht und keine Rückrechnung von Endenergie zur Primärenergie nachvollzogen werden muss.

Strom, Wärme, Verkehr sowie Abfall und Abwasser hinsichtlich ihrer Verbrauchs- und Versorgungsstrukturen analysiert.95

4.1.1.1 Gesamtstromverbrauch und Stromerzeugung

Zur Ermittlung des Stromverbrauches des Betrachtungsgebietes wurden die zur Verfügung gestellten Daten des zuständigen Netzbetreibers⁹⁶ über die gelieferten und durchgeleiteten Strommengen an private, kommunale sowie gewerbliche und industrielle Abnehmer herangezogen. 97 Die vorliegenden Verbrauchsdaten gehen auf das Jahr 2011 zurück und weisen einen Gesamtstromverbrauch von rund 54.600 MWh/a für die Verbandsgemeinde aus.

Mit einem jährlichen Verbrauch von rund 30.000 MWh weist die Verbrauchergruppe Private Haushalte den höchsten Stromverbrauch der Verbandsgemeinde auf. Im Bereich Industrie, Gewerbe Handel und Dienstleistungen werden jährlich ca. 23.000 MWh benötigt. Gemessen am Gesamtstromverbrauch stellen die kommunalen Liegenschaften⁹⁸ mit einer jährlichen Verbrauchsmenge von etwa 1.600 MWh erwartungsgemäß die kleinste Verbrauchsgruppe des Betrachtungsgebietes dar (siehe dazu Abb. 4-3)99

Heute werden bilanziell betrachtet ca. 6% des Gesamtstromverbrauches der Verbandsgemeinde aus erneuerbarer Stromproduktion gedeckt. Damit liegt der Anteil Erneuerbarer Energien an der Stromproduktion unter dem Bundesdurchschnitt von 20,3% im Jahr 2011. 100 Die lokale Stromproduktion speist sich vor allem aus der Nutzung von Photovoltaikanlagen. Die folgende Abbildung zeigt den derzeitigen Beitrag der Erneuerbaren Energien im Verhältnis zum Gesamtstromverbrauch auf:

© IfaS 2013 49

⁹⁵ Detailangaben zu den Berechnungsparametern sind der Erläuterung zu den Wirkungsanalysen im Anhang zu entnehmen.

⁹⁶ In diesem Fall ist der zuständige Netzbetreiber für den Landkreis Südwestpfalz: Für die A-Gemeinden die gemeindeeigenen Elektrizitätswerke; für alle anderen die Pfalzwerke AG.

Die Daten wurden in folgender Aufteilung übermittelt: Straßenbeleuchtung, Speicherheizung, Gewerbe, öffentliche Liegenschaften und Private Haushalte.

Auf Verbandsgemeindeebene werden nur die kommunalen Liegenschaften betrachtet (ohne die Kreiseigenen).

Die angegebenen Verbrauchswerte innerhalb der Sektoren wurden mit Excel von kWh auf MWh abgerundet, aus diesem Grund kann es zu rundungsbedingten Abweichungen in Bezug auf die Gesamtverbrauchsmenge kommen. ¹⁰⁰ Vgl. BMU 2012: S. 12

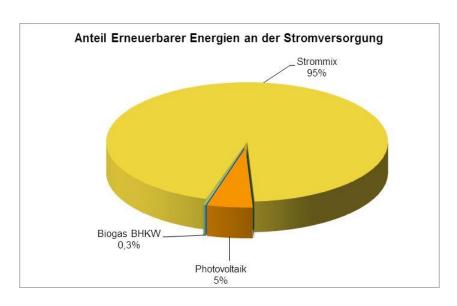


Abb. 4-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Rodalben

4.1.1.2 Gesamtwärmeverbrauch und Wärmeerzeugung

Die Ermittlung des Gesamtwärmebedarfes auf dem Gebiet der Verbandsgemeinde stellt sich im Vergleich zur Stromverbrauchsanalyse deutlich schwieriger dar. Neben konkreten Verbrauchszahlen für leitungsgebundene Wärmeenergie (Erdgas) kann in der Gesamtbetrachtung aufgrund einer komplexen und zum Teil nicht leitungsgebundenen Versorgungsstruktur lediglich eine Annäherung an tatsächliche Verbrauchswerte erfolgen. Zur Ermittlung des Wärmebedarfes auf Basis leitungsgebundener Energieträger wurden Verbrauchsdaten über die Erdgasliefermengen im Verbrauchsgebiet der Verbandsgemeinde für das Jahr 2011 des Netzbetreibers¹⁰¹ herangezogen. Ferner wurden für die Ermittlung des Wärmebedarfes im privaten Wohngebäudebestand die Daten des Zensus 87¹⁰² und der Baufertigstellungsstatistik 1990 bis 2010¹⁰³ betrachtet und ausgewertet (vgl. dazu Kapitel 4.2).

Des Weiteren wurden die durch das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) gelieferten Daten über geförderte innovative Erneuerbare-Energien-Anlagen (Solarthermie-Anlagen¹⁰⁴, mechanisch beschickte Bioenergieanlagen¹⁰⁵, Wärmepumpen¹⁰⁶, KWK-Anlagen¹⁰⁷) bis zum Jahr 2012 herangezogen.

Insgesamt konnte für die Verbandsgemeinde ein jährlicher Gesamtwärmeverbrauch von rund 153.000 MWh ermittelt werden. 108

© IfaS 2013 50

-

¹⁰¹ In diesem Fall ist der zuständige Netzbetreiber für den gesamten Landkreis: Die Pfalzgas GmbH

¹⁰² Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: a

Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: b und c

¹⁰⁴ Vgl. Webseite Solaratlas

Vgl. Webseite Biomasseatlas

¹⁰⁶ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J. c

¹⁰⁷ Vgl. Datenübermittlung Alfred Smuck (BAFA) vom 13.11.2012

¹⁰⁸ Der Gesamtwärmeverbrauch setzt sich aus folgenden Punkten zusammen: Angaben zu gelieferten Gasmengen der Netzbetreiber, Hochrechnung des Wärmeverbrauches im privaten Wohngebäudesektor, Angaben der Verwaltung zu kommunalen Liegenschaften sowie statistischen Angaben über den Ölverbrauch der Industrie im Betrachtungsgebiet.

Mit einem jährlichen Anteil von ca. 95% des Gesamtwärmeverbrauches (ca. 153.000°MWh/a) stellen die Privaten Haushalte mit Abstand den größten Wärmeverbraucher der Verbandsgemeinde dar. An zweiter Stelle steht die Verbrauchergruppe Industrie, Gewerbe Handel und Dienstleistungen mit einem Anteil von ca. 3% (ca. 4.100°MWh/a). Kommunale Liegenschaften dagegen sind nur zu ca. 2% (ca. 3.300 MWh/a) am Gesamtwärmeverbrauch beteiligt.

Derzeit können etwa 6% des Gesamtwärmeverbrauches über erneuerbare Energieträger abgedeckt werden. Damit liegt der Anteil Erneuerbarer Energien an der Wärmebereitstellung unter dem Bundesdurchschnitt, der im Jahr 2011 bei 11% lag. 109 In der Verbandsgemeinde Rodalben beinhaltet die Wärmeproduktion aus Erneuerbaren Energieträgern vor allem die Verwendung von Biomasse-Festbrennstoffen, Wärmepumpen und solarthermischen Anlagen. Die folgende Darstellung verdeutlicht, dass die Wärmeversorgung im IST-Zustand überwiegend auf fossilen Energieträgern basiert.

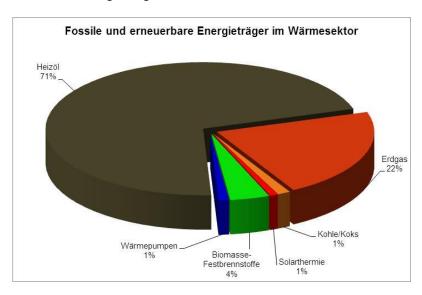


Abb. 4-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Rodalben

4.1.1.3 Energieverbrauch im Sektor Verkehr

Im Vergleich zum Energieverbrauch und dem Ausstoß der THG-Emissionen von 1990 sind diese in 2012 nur um 6% gestiegen obwohl sich der Fahrzeugbestand im gleichen Zeitraum um 20% erhöht hat. Der geringe Anstieg des Energieverbrauchs und der THG-Emissionen ist auf Effizienzgewinne zurückzuführen. Bereits 2020 wird eine Reduktion um 5% (Energie) sowie 34% (Emissionen) durch effizientere Technologien, biogene Kraftstoffe und die Zielvorgabe der Bundesregierung von "1 Millionen Elektrofahrzeuge bis 2020 auf Deutschlands Straßen" erfolgen.

© IfaS 2013 51

_

¹⁰⁹ Vgl. BMU 2012: S. 14

Dieser Trend wird sich in den Folgejahren fortsetzen, sodass der Endenergieverbrauch bis zum Jahr 2050 auf jährlich rund 55.146 MWh/a fällt sowie die THG-Emissionen auf 0 t/a CO₂. Dies entspricht einer Reduktion von insgesamt ca. 59% (Energie) und 100% (Emissionen) gegenüber dem Basisjahr 1990.

Tab. 4-1: Energiebilanz der VG Rodalben

Gesamt	1990	2012	2020	2030	2040	2050
Gesaint	MWh	MWh	MWh	MWh	MWh	MWh
Fossile Kraftstoffe	133.371,13	141.197,46	119.039,20	92.251,90	42.609,94	0,00
- Diesel	84.336,02	88.782,41	68.044,26	54.943,04	25.791,56	0,00
- Ottokraftstoff	49.035,11	49.709,84	46.576,09	33.944,62	15.880,44	0,00
- Erdgas	0,00	27,64	1.698,69	1.254,48	687,69	0,00
- Flüssiggas	0,00	2.677,58	2.720,17	2.109,75	250,25	0,00
Erneuerbare Kraftstoffe	0,00	0,00	8.192,42	18.587,89	38.210,79	55.146,83
- Bio-/Windgas	0,00	0,00	4.462,49	7.085,28	11.116,74	10.003,00
- Strom	0,00	0,00	3.729,93	11.502,61	27.094,05	45.143,83
Gesamt	133.371,13	141.197,46	127.231,62	110.839,79	80.820,74	55.146,83
Differenz zu 1990		7.826,33	-6.139,51	-22.531,35	-52.550,39	-78.224,31
Veränderung in Prozent		6%	-5%	-17%	-39%	-59%

Tab. 4-2: Emissionsbilanz der VG Rodalben

Gesamt	1990	2012	2020	2030	2040	2050
Gesam	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2
Fossile Kraftstoffe	35.456,63	37.497,83	23.242,57	16.913,50	7.484,59	0,00
- Diesel	23.764,20	25.017,11	12.454,53	9.240,82	4.331,34	0,00
- Ottokraftstoff	11.692,42	11.848,59	9.734,79	6.902,51	2.951,59	0,00
- Erdgas	0,00	5,58	368,21	262,09	136,12	0,00
- Flüssiggas	0,00	626,55	685,04	508,09	65,55	0,00
Erneuerbare Kraftstoffe	0,00	0,00	0,00	0,00	0,00	0,00
- Bio-/Windgas	0,00	0,00	0,00	0,00	0,00	0,00
- Strom	0,00	0,00	0,00	0,00	0,00	0,00
Gesamt	35.456,63	37.497,83	23.242,57	16.913,50	7.484,59	0,00
Differenz zu 1990		2.041,21	-12.214,06	-18.543,13	-27.972,04	-35.456,63
Veränderung in Prozent		6%	-34%	-52%	-79%	-100%

4.1.1.4 Energieverbrauch im Sektor Abfall / Abwasser

Die Emissionen und Energieverbräuche des Sektors Abfall und Abwasser sind im Kontext des vorliegenden integrierten Klimaschutzkonzeptes sowie der dazugehörigen Treibhausgasbilanz als sekundär zu bewerten und werden aus diesem Grund größtenteils statistisch abgeleitet. Auf den Bereich Abfall und Abwasser ist weniger als 1% der Gesamtemissionen zurückzuführen.¹¹⁰

Der Energieverbrauch im Bereich der Abfallwirtschaft lässt sich zum einen auf die Behandlung der anfallenden Abfallmengen und zum anderen auf den Abfalltransport zurückführen. Abgeleitet aus den verschiedenen Abfallfraktionen im Entsorgungsgebiet fielen in der Verbandgemeinde Rodalben¹¹¹ im Jahr 2011 insgesamt rund 6.000 t Abfall an.

© IfaS 2013 52

.

¹¹⁰ Bezogen auf die nicht-energetischen Emissionen. Die Emissionen aus dem stationären Energieverbrauch und dem Verkehr sind bereits in den entsprechenden Kapiteln enthalten und werden nicht separat für den Abfall- und Abwasserbereich dargestellt.

stellt.

111 Vgl. Ministerium für Wirtschaft, Klimaschutz, Energie und Landesplanung Rheinland-Pfalz 2012

Die durch die Abfallbehandlung entstehenden THG-Emissionen im stationären- sowie im Transportbereich, finden sich im Rahmen der Energie- und Treibhausgasbilanz im Sektor Strom, Wärme und Verkehr wieder. Das deutschlandweite Verbot einer direkten Mülldeponierung seit 2005 und die gesteigerte Kreislaufwirtschaft führten dazu, dass die Emissionen, die dem Abfallsektor zuzurechnen waren, stark gesunken sind. Die Abfallentsorgung in Müllverbrennungsanlagen erfolgt vollständig unter energetischer Nutzung, sodass derzeit lediglich die Emissionen der Bio- und Grünabfälle mit einem Faktor von 17 kg CO₂e/t Abfall¹¹² berechnet werden. Für das Betrachtungsgebiet konnte in dieser Fraktion eine Menge von 826 t/a ermittelt werden. Demnach werden jährlich ca. 14 t CO₂-e verursacht.

Die Energieverbräuche zur Abwasserbehandlung sind ebenfalls im stationären Bereich der Bilanz eingegliedert (Strom und Wärme) und fließen auch in diesen Sektoren in die Treibhausgasbilanz ein. Zusätzliche Emissionen entstehen aus der Abwasserreinigung (N₂O durch Denitrifikation) und der anschließenden Weiterbehandlung des Klärschlamms (stoffliche Verwertung). Gemäß den Einwohnerwerten (Berechnung der N₂O-Emissionen) für das Betrachtungsjahr 2011 sowie Angaben des Statistischen Landesamtes Rheinland-Pfalz zur öffentlichen Klärschlammentsorgung¹¹³ wurden für den IST-Zustand der Abwasserbehandlung Emissionen in Höhe von ca. 285 t CO₂-e ermittelt.

4.1.2 Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern

Der Gesamtenergieverbrauch bildet sich als Summe der zuvor beschriebenen Teilbereiche und beträgt im abgeleiteten "IST-Zustand"¹¹⁴ ca. 348.000 MWh/a. Der Anteil der Erneuerbaren Energien am stationären Verbrauch¹¹⁵ (exklusive Verkehr) liegt in der Verbandsgemeinde durchschnittlich bei 6%. Die nachfolgende Grafik zeigt einen Gesamtüberblick über die derzeitigen Energieverbräuche auf, unterteilt nach Energieträgern und Sektoren:

¹¹² Vgl. Difu 2011: S. 266

Vgl. Statistisches Landesamt Rheinland-Pfalz 2012

An dieser Stelle ist zu erwähnen, dass sich die Datenquellen der verschiedenen Bausteine zur Errechnung des Gesamtenergieverbrauches auf unterschiedliche Bezugsjahre beziehen. Da kein einheitliches Bezugsjahr über alle Datenquellen hinweg angesetzt werden konnte, hat der Konzeptersteller jeweils den aktuellsten Datensatz verwandt. In den betroffenen Verbrauchsbereichen wurde davon ausgegangen, dass sich die Verbrauchsmengen in den letzten Jahren nicht signifikant verändert haben.

¹¹⁵ Hier wird der Vergleich mit dem stationären Energieverbrauch herangezogen, da im IST-Zustand mit der gegebenen Statistik keine erneuerbaren Energieträger als Treibstoff zu ermitteln waren.

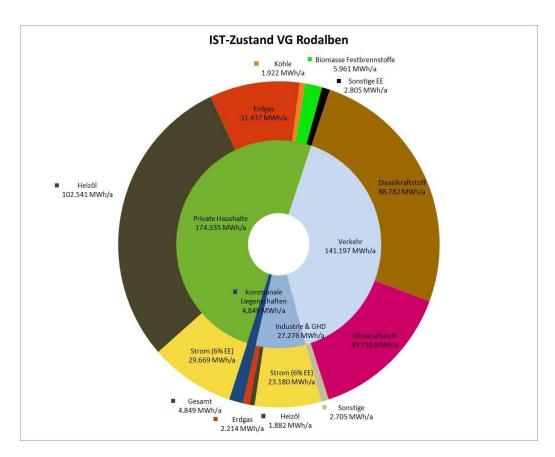


Abb. 4-3: Gesamtenergieverbrauch der Verbandsgemeinde Rodalben im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren

Die zusammengefügte Darstellung der Energieverbräuche nach Verbrauchergruppen lässt erste Rückschlüsse über die dringlichsten Handlungssektoren des Klimaschutzkonzeptes zu. Das derzeitige Versorgungssystem ist augenscheinlich durch den Einsatz fossiler Energieträger geprägt. Für die regenerativen Energieträger ergibt sich demnach ein großer Ausbaubedarf. Des Weiteren lässt sich ableiten, dass die kommunalen Liegenschaften und Einrichtungen des Betrachtungsgebietes aus energetischer Sicht nur in geringem Maße zur Bilanzoptimierung beitragen können. Dennoch wird die Optimierung dieses Bereiches – insbesondere in Hinblick auf die Vorbildfunktion der Verbandsgemeinde gegenüber den weiteren Verbrauchergruppen – als besonders notwendig erachtet.

Den größten Energieverbrauch mit ca. 174.000.°MWh/a verursachen in der Verbandsgemeinde Rodalben die Privaten Haushalte. Folglich entsteht hier auch der größte Handlungsbedarf, welcher sich vor allem im Einsparpotenzial der fossilen Wärmeversorgung widerspiegelt. Zweitgrößte Verbrauchergruppe ist der Verkehrssektor mit einem ermittelten Verbrauch von ca. 141.000°MWh/a. Im Hinblick auf die Verbrauchsgruppe Industrie und GHD entsteht ein Energieverbrauch von ca. 27.000°MWh/a. Die Verbandsgemeinde kann auf diese Verbrauchssektoren einen indirekten Einfluss nehmen, um die Energiebilanz und die damit einhergehenden ökologischen und ökonomischen Effekte zu verbessern.

4.1.3 Treibhausgasemissionen der Verbandsgemeinde Rodalben

Ziel der Treibhausgasbilanzierung auf kommunaler Ebene ist es, spezifische Referenzwerte für zukünftige Emissionsminderungsprogramme zu erheben. In der vorliegenden Bilanz werden auf Grundlage der zuvor erläuterten verbrauchten Energiemengen die territorialen Treibhausgasemissionen (CO₂e) in den Bereichen Strom, Wärme, Verkehr sowie Abfall und Abwasser quantifiziert. Die folgende Darstellung bietet einen Gesamtüberblick der relevanten Treibhausgasemissionen der Verbandsgemeinde, welche sowohl für den IST-Zustand als auch für das Basisjahr 1990 errechnet wurden.

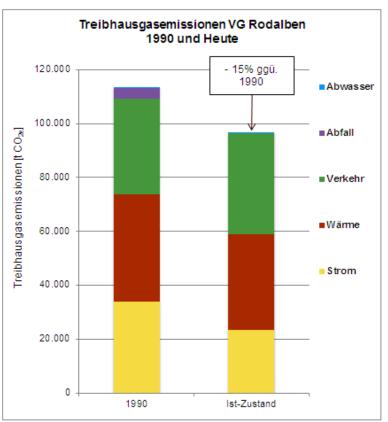


Abb. 4-4: Treibhausgasemissionen der Verbandsgemeinde Rodalben (1990 und IST-Zustand)

Im Referenzjahr 1990 wurden aufgrund des Energieverbrauches¹¹⁶ der Verbandsgemeinde ca. 114.000°t CO₂-e emittiert. Für den ermittelten IST-Zustand wurden jährlich Emissionen von etwa 97.000 t/CO₂-e kalkuliert. Gegenüber dem Basisjahr 1990 konnten somit bereits ca. 15% der Emissionen eingespart werden.

© IfaS 2013 55

_

¹¹⁶ Im Rahmen der retrospektiven Bilanzierung für das Basisjahr 1990 konnte auf keine Primärdatensätze zurückgegriffen werden. Der Stromverbrauch wurde anhand des Gesamtstromverbrauches von Rheinland-Pfalz (Vgl. Statistisches Landesamt Rheinland-Pfalz 2012: S. 18) über Einwohneräquivalente und Pro-Kopf-Verbrauchsentwicklungen von Rheinland-Pfalz auf 1990 rückgerechnet. Der Wärmeverbrauch der Privaten Haushalte konnte auf statistischer Grundlage zur Verteilung der Feuerungsanlagen und Wohngebäude (Zensus 1987) auf das Basisjahr zurückgerechnet werden. Die Rückrechnung für den Sektor Industrie & GHD erfolgte über die Erwerbstätigen am Arbeitsort (Vgl. AK ETR 2010). Dabei wurde von heutigen Verbrauchsdaten ausgegangen. Die Emissionen im Sektor Verkehr konnten durch die Zulassungen und Verbrauchswerte des Fahrzeugbestandes im Jahr 1990 berechnet werden. Verbrauchsdaten im Abfall- und Abwasserbereich wurden auf Grundlage der Landesstatistiken (Vgl. Ministerium für Umwelt, Forsten und Verbraucherschutz o.J.: S. 13 ff. und Statistisches Landesamt Rheinland-Pfalz 2012: S.4) in diesem Bereich auf 1990 rückgerechnet.

Große Einsparungen entstanden vor allem im Strombereich, welche sowohl auf den Ausbau der Photovoltaik- und Biogasanlagen als auch auf eine bundesweite Verbesserung des anzusetzenden Emissionsfaktors im Stromsektor zurückzuführen sind. Im Stromsektor kann demnach von einer Reduktionsentwicklung von ca. 31% ausgegangen werden.

Insgesamt stellt der Verkehrsbereich derzeit mit ca. 39% den größten Verursacher der Treibhausgasemissionen dar und bietet den größten Ansatzpunkt für Einsparungen, welche im weiteren Verlauf des Klimaschutzkonzeptes (insbesondere im Maßnahmenkatalog) erläutert werden.

4.2 Energieeffizienz

In der Verbandsgemeinde Rodalben befinden sich zum Jahr 2010 insgesamt 4.907 Wohngebäude mit einer Wohnfläche von ca. 740.000 m². Die Gebäudestruktur teilt sich in 66% Einfamilienhäuser, 27% Zweifamilienhäuser und 7% Mehrfamilienhäuser.

Die folgende Tabelle gibt einen Überblick des Wohngebäudebestandes der VG (nach Baualtersklassen unterteilt).

Tab. 4-3: Wohngebäudebestand der VG Rodalben nach Baualtersklassen¹¹⁹

Altersklasse	Prozentualer Anteil	Wohngebäude nach Altersklassen	Davon Ein- und Zweifamilienhäuser	Davon Mehrfamilienhäuser
bis 1918	15,21%	746	695	52
1919 - 1948	12,78%	627	584	43
1949 - 1978	42,63%	2.092	1.947	145
1979 - 1990	14,80%	726	676	50
1991 - 2000	10,72%	526	490	36
2001 - Heute	3,86%	189	176	13
Gesamt	100%	4.907	4.568	339

Insgesamt existieren in der Verbandsgemeinde 5.022 Primärheizer und 1.765 Sekundärheizer (z. B. Holzeinzelöfen). Die Verteilung der Heizenergieanlagen ist in nachfolgender Tabelle dargestellt.

© IfaS 2013 56

4

 ¹¹⁷ Für das Jahr 1990 wurde ein CO₂-e-Faktor von 683 g/kWh exklusive der Vorketten berechnet. Berechnungsgrundlage ist an dieser Stelle Gemis 4.7 in Anlehnung an die Kraftwerksstruktur zur Stromerzeugung im Jahr 1990 (Vgl. BMU 2010)
 118 Vgl. Statistisches Landesamt Rheinland-Pfalz, 2010

Vgl. Destatis, schriftliche Mitteilung von Frau Leib-Manz (Bereich Bautätigkeiten), Verteilung innerhalb der Baualtersklassen – Tabelle zur Aufteilung des Deutschen Wohngebäudebestandes nach Bundesländern und Baualtersklassen, am 15.09.2010.

Tab. 4-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträger

Energieträger	Primärheizer	Sekundärheizer
Öl	3.785	599
Gas	1.178	54
Strom	59	242
Kohle, Holz		870
Summe	5.022	1.765
Gesamt	6.	787

Außerdem gibt es in der VG noch 89 Wärmepumpen und durch das Marktanreizprogramm geförderte Biomasseanlagen mit insgesamt 2.138 kW installierter Leistung.

Es ergibt sich ein gesamter Heizwärmeverbrauch der privaten Wohngebäude innerhalb der Verbandsgemeinde von derzeit 145 GWh/a.

Insbesondere bei veralteten Heizungsanlagen ist ein hohes Einsparpotenzial vorhanden. Folgende Tabelle stellt die Anzahl der Anlagen für Öl- und Gasheizungen nach Baualtersklassen dar:

Tab. 4-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen

Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen							
	bis 1978 1979-1982 1983-1988 1988-1997 1998-2008 ab 20						
ÖI	243	179	545	1.635	1.152	32	
Gas	20	36	142	602	366	13	

Eigene Liegenschaften:

Aufgrund eines Heizwärmeverbrauchs der auswertbaren 21 eigenen Gebäude in der Verbandsgemeinde (siehe Tab. 4-6) von 2.400 MWh im Jahr 2011 (bei 11.000 m² Nutzfläche), wurden für die einzelnen Gebäude der spezifische Heizwärmeverbrauch in kWh/(m²*a) ermittelt und in folgender Abbildung dargestellt.

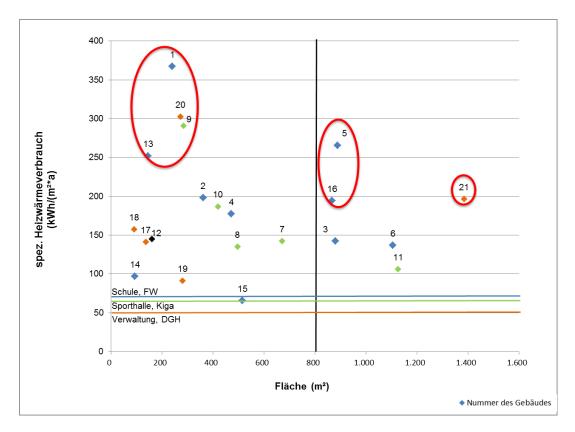


Abb. 4-5: VG Rodalben – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche

Tab. 4-6: Übersicht Öffentliche Liegenschaften

Nr.	Öffentliche Liegenschaften
1	Grundschule Clausen
2	Grundschule Donsieders
3	Grundschule Leimen
4	Grundschule Merzalben
5	Grundschule Münchweiler
6	Grundschule Rodalben
7	Schillerhalle Donsieders
8	Kindergarten Max&Moritz
9	Sommerfeldkindergarten
10	Kindertagesstätte St. Dominikus
11	Rotensteinhalle Münchweiler
12	Sportheim FC Münchweiler
13	Feuerwehrgerätehaus Clausen
14	Feuerwehrgerätehaus Donsieders
15	Feuerwehrgerätehaus Münchweiler
16	Feuerwehrgerätehaus Rodalben
17	Rathaus Clausen
18	Rathaus Merzalben
19	Altes Rathaus Rodalben
20	Haus der Kultur Rodalben
21	Rathaus Rodalben

Tab. 4-7: Gebäude mit hohen Wärmeverbräuchen

Nr.	Gebäude	BGF (m²)	Verbrauch (kWh/a)
1	Grundschule Clausen	240	112.574
5	Grundschule Münchweiler	889	301.292
9	Sommerfeldkindergarten	284	105.499
13	Feuerwehrgerätehaus Clausen	146	46.845
16	Feuerwehrgerätehaus Rodalben	867	215.036
20	Haus der Kultur Rodalben	272	105.121
21	Rathaus Rodalben	1.384	347.467

Die Gesamtleistung der 30 Heizungsanlagen beträgt 3.215 kW und verteilt sich auf die einzelnen Energieträger wie in folgender Tabelle dargestellt:

Tab. 4-8: Leistung der Heizungsanlagen nach Energieträger

Energieträger	Anzahl	Leistung (kW)
ÖI	4	419
Gas	25	2.796
Strom	1	
Summe	30	3.215

4.3 Erneuerbarer Energien

4.3.1 Photovoltaikpotenzial auf Freiflächen

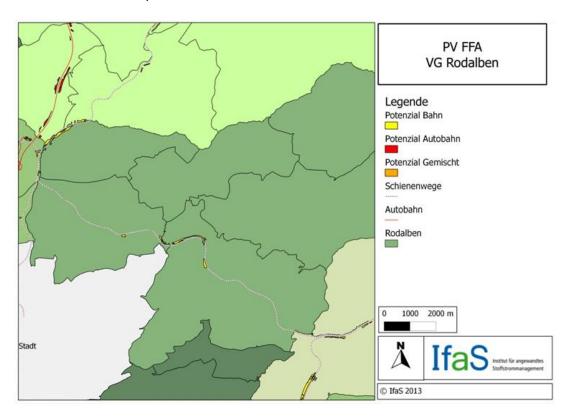


Abb. 4-6: Photovoltaikpotenzial auf Freiflächen VG Rodalben

Tab. 4-9: Photovoltaikpotenzial auf Freiflächen VG Rodalben

Ausbaupotenziale PV-FFA					
Ctandarttura	Anzahl	Fläche	Install. Leistung ¹	Stromerträge ²	
Standorttyp	(Stück)	Anzahl Fläche Install. Leistung¹ Strom (Stück) (m²) (kWp) (MV) 14 250.000 10.000 9.	(MWh/a)		
Schienenwege	14	250.000	10.000	9.000	
1: 25 m²/kWP	2: 900 kWh*a/kWP				

4.3.2 Solarenergiepotenzial auf Dachflächen

Tab. 4-10: Solarenergiepotenzial auf Dachflächen VG Rodalben

Ausbaupotenziale Solarenergie auf Dachflächen					
Photovoltaik		Solarthermie			
Installierbare Leistung ¹ (kWp)	Stromerträge (MWh/a)	Kollektorfläche ² (m²)	Wärmeerträge ³ (MWh/a)	Heizöläquivalente ⁴ (I)	
37.000	32.800	68.000	25.100	3.077.000	

- 1) 7 m² pro kWp Dickschicht/12,5 m² pro kWp Dünnschicht
- 2) 14 m² Solarthermie pro Dachfläche
- 3) Ertrag von 350 kWh/m² Solarthermie
- 4) Verdrängung Ölheizung

- 5) Techn. Potenzial Bestand = Ausbaupotenzial
- Bestand ST: Angaben der BAFA zu geförderten Anlagen
- Bestand PV: Angaben aus EEG Anlagenregister 2011
- Werte auf volle hundert gerundet

4.3.3 Windenergiepotenzial

Tab. 4-11: Windenergiepotenzial VG Rodalben

Ausbaupotenziale Windenergie					
Potenzialfläche (ha)	Anteil (%)	mögliche WEA	Install. Leistung (MW)	Stromerträge (GWh/a)	
2.568	21	179	411,7	863	

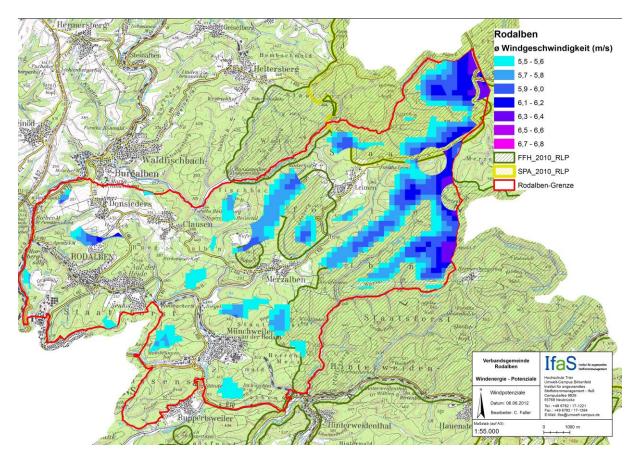


Abb. 4-7: Windenergiepotenzial VG Rodalben

4.3.4 Geothermiepotenzial

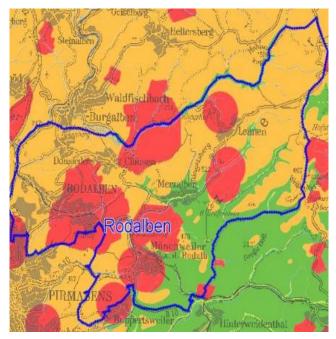


Abb. 4-8: Geothermiepotenzial VG Rodalben

Rodalben liegt zum größten Teil auf kritischen Gebieten oder auf welchen, die nur mit zusätzlichen Auflagen meist genehmigungsfähig sind. Die Ortsgemeinde Münchweiler befindet sich ausschließlich und die Ortsgemeinde Rodalben zum überwiegenden Teil auf kritischem Gebiet. Lediglich die Ortsgemeinde Merzalben und die südlich davon gelegenen Waldgebiete liegen auf unkritischen Gebieten.

4.3.5 Biomassepotenzial

Tab. 4-12: Biomassepotenzial VG Rodalben

Ausbaupotenziale Biomasse							
Festbrennstoffe Fortst	Festbrennstoffe aus Ackerflächen	Festbrennstoffe aus Grünschnitt und Landschaftspfle	Biogassubstrate aus landwirt.	Biogassubstrate aus Ackerflächen	Biogassubstrate aus Dauergrünland	Biogassubstrate organische Abfälle	Gesamt
[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]
27.784	838	1.619	467	849	1.189	1.065	33.811

4.3.6 Wasserkraftpotenzial

Entfällt

Verbandsgemeinde Thaleischweiler-Fröschen

Energie- und Treibhausgasbilanzierung (Startbilanz)

Um Klimaschutzziele innerhalb eines Betrachtungsraumes quantifizieren zu können, ist es unerlässlich, die Energieversorgung, den Energieverbrauch sowie die unterschiedlichen Energieträger zu bestimmen. Die Analyse bedarf der Berücksichtigung einer fundierten Datengrundlage und muss sich darüber hinaus statistischer Berechnungen¹²⁰ bedienen, da keine vollständige Erfassung der Verbrauchs- und Produktionsdaten für die Verbandsgemeinde Thaleischweiler-Fröschen vorliegt.

Die Betrachtung der Energiemengen bezieht sich im Rahmen des Konzeptes auf die Form der Endenergie (z. B. Heizöl, Holzpellets, Strom). Die verwendeten Emissionsfaktoren beziehen sich auf die relevanten Treibhausgase CO2, CH4 sowie N2O und werden als CO2-Äquivalente¹²¹ (CO₂e) ausgewiesen. Die Faktoren stammen aus dem Globalen Emissions-Modell integrierter Systeme (GEMIS) in der Version 4.7¹²² und sind als Anhang (Erläuterung zu den Wirkungsanalysen) zur Einsicht hinterlegt. Sie beziehen sich ebenfalls auf den Endenergieverbrauch und berücksichtigen keine Vorketten z. B. aus der Anlagenproduktion oder der Brennstoffbereitstellung. Das vorliegende Konzept bezieht sich im Wesentlichen systematisch auf das Gebiet der Verbandsgemeinde. Dementsprechend ist die Energie- und Treibhausgasbilanzierung nach der Methodik einer "endenergiebasierten Territorialbilanz" aufgebaut, welche im Praxisleitfaden "Klimaschutz in Kommunen" für die Erstellung von Klimaschutzkonzepten nahegelegt wird. 123 Die Betrachtung der Energiemengen bezieht sich vor diesem Hintergrund auf die Form der Endenergie. 124

Im Folgenden werden die Gesamtenergieverbräuche sowie die derzeitigen Energieversorgungsstrukturen der Verbandsgemeinde Thaleischweiler-Fröschen im IST-Zustand analysiert.

5.1.1 Analyse des Gesamtenergieverbrauches und der Energieversorgung

Mit dem Ziel, den Energieverbrauch und die damit einhergehenden Treibhausgasemissionen der Verbandsgemeinde im IST-Zustand abzubilden, werden an dieser Stelle die Bereiche

© IfaS 2013 64

¹²⁰ Im Klimaschutzkonzept erfolgen insbesondere die Berechnungen für das ausgewählte Basisjahr 1990 anhand statistischer Daten.

121 N₂O und CH₄ wurden in CO₂-Äquivalente umgerechnet (Vgl. IPCC 2007: S. 36)

¹²² Vgl. Fritsche und Rausch 2011

¹²³ Vgl. Difu 2011; Der Klimaschutzleitfaden spricht Empfehlungen zur Bilanzierungsmethodik im Rahmen von Klimaschutzkonzepten aus. Das IfaS schließt sich im vorliegenden Fall dieser Methodik an, da die Empfehlungen des Praxisleitfadens unter anderem durch das Umweltbundesamt (UBA) sowie das Forschungszentrum Jülich GmbH (PTJ) fachlich unterstützt wurden.

Des Weiteren ermöglicht die Betrachtung der Endenergie eine höhere Transparenz auch für fachfremde Betroffene und Interessierte, da ein Bezug eher zur Endenergie besteht und keine Rückrechnung von Endenergie zur Primärenergie nachvollzogen werden muss.

Strom, Wärme, Verkehr sowie Abfall und Abwasser hinsichtlich ihrer Verbrauchs- und Versorgungsstrukturen analysiert. 125

5.1.1.1 Gesamtstromverbrauch und Stromerzeugung

Zur Ermittlung des Stromverbrauches des Betrachtungsgebietes wurden die zur Verfügung gestellten Daten des zuständigen Netzbetreibers¹²⁶ über die gelieferten und durchgeleiteten Strommengen an private, kommunale sowie gewerbliche und industrielle Abnehmer herangezogen. 127 Die vorliegenden Verbrauchsdaten gehen auf das Jahr 2011 zurück und weisen einen Gesamtstromverbrauch von rund 33.000 MWh/a für die Verbandsgemeinde aus.

Mit einem jährlichen Verbrauch von rund 21.000 MWh weist die Verbrauchergruppe Private Haushalte den höchsten Stromverbrauch der Verbandsgemeinde auf. Im Bereich Industrie, Gewerbe Handel und Dienstleistungen werden jährlich ca. 11.000 MWh benötigt. Gemessen am Gesamtstromverbrauch stellen die kommunalen Liegenschaften¹²⁸ mit einer jährlichen Verbrauchsmenge von etwa 1.000 MWh erwartungsgemäß die kleinste Verbrauchsgruppe des Betrachtungsgebietes dar (siehe dazu Abb. 5-3)¹²⁹

Heute werden bilanziell betrachtet ca. 14% des Gesamtstromverbrauches der Verbandsgemeinde aus erneuerbarer Stromproduktion gedeckt. Damit liegt der Anteil Erneuerbarer Energien an der Stromproduktion unter dem Bundesdurchschnitt von 20,3% im Jahr 2011. 130 Die lokale Stromproduktion speist sich vor allem aus der Nutzung von Photovoltaikanlagen. Die folgende Abbildung zeigt den derzeitigen Beitrag der Erneuerbaren Energien im Verhältnis zum Gesamtstromverbrauch auf:

© IfaS 2013 65

¹²⁵ Detailangaben zu den Berechnungsparametern sind der Erläuterung zu den Wirkungsanalysen im Anhang zu entnehmen.

In diesem Fall ist der zuständige Netzbetreiber für den Landkreis Südwestpfalz: Für die A-Gemeinden die gemeindeeigenen Elektrizitätswerke; für alle anderen die Pfalzwerke AG.

Die Daten wurden in folgender Aufteilung übermittelt: Straßenbeleuchtung, Speicherheizung, Gewerbe, öffentliche Liegenschaften und Private Haushalte.

128
Auf Verbandsgemeindeebene werden nur die kommunalen Liegenschaften betrachtet (ohne die Kreiseigenen).

Die angegebenen Verbrauchswerte innerhalb der Sektoren wurden mit Excel von kWh auf MWh abgerundet, aus diesem Grund kann es zu rundungsbedingten Abweichungen in Bezug auf die Gesamtverbrauchsmenge kommen. ¹³⁰ Vgl. BMU 2012: S. 12

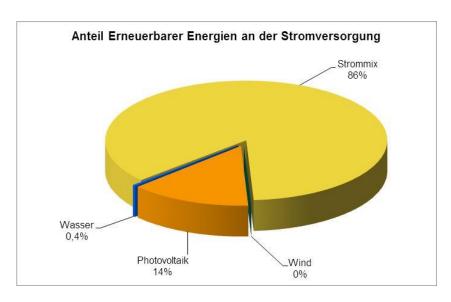


Abb. 5-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Thaleischweiler-Fröschen

5.1.1.2 Gesamtwärmeverbrauch und Wärmeerzeugung

Die Ermittlung des Gesamtwärmebedarfes auf dem Gebiet der Verbandsgemeinde stellt sich im Vergleich zur Stromverbrauchsanalyse deutlich schwieriger dar. Neben konkreten Verbrauchszahlen für leitungsgebundene Wärmeenergie (Erdgas) kann in der Gesamtbetrachtung aufgrund einer komplexen und zum Teil nicht leitungsgebundenen Versorgungsstruktur lediglich eine Annäherung an tatsächliche Verbrauchswerte erfolgen. Zur Ermittlung des Wärmebedarfes auf Basis leitungsgebundener Energieträger wurden Verbrauchsdaten über die Erdgasliefermengen im Verbrauchsgebiet der Verbandsgemeinde für das Jahr 2011 des Netzbetreibers¹³¹ herangezogen. Ferner wurden für die Ermittlung des Wärmebedarfes im privaten Wohngebäudebestand die Daten des Zensus 87¹³² und der Baufertigstellungsstatistik 1990 bis 2010¹³³ betrachtet und ausgewertet (vgl. dazu Kapitel 5.2).

Des Weiteren wurden die durch das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) gelieferten Daten über geförderte innovative Erneuerbare-Energien-Anlagen (Solarthermie-Anlagen¹³⁴, mechanisch beschickte Bioenergieanlagen¹³⁵, Wärmepumpen¹³⁶, KWK-Anlagen¹³⁷) bis zum Jahr 2012 herangezogen.

Insgesamt konnte für die Verbandsgemeinde ein jährlicher Gesamtwärmeverbrauch von rund 125.000 MWh ermittelt werden. 138

© IfaS 2013 66

.

¹³¹ In diesem Fall ist der zuständige Netzbetreiber für den gesamten Landkreis: Die Pfalzgas GmbH

¹³² Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: a

Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: b und c

¹³⁴ Vgl. Webseite Solaratlas

¹³⁵ Vgl. Webseite Biomasseatlas

Vgl. Statistisches Landesamt Rheinland-Pfalz o.J. c

¹³⁷ Vgl. Datenübermittlung Alfred Smuck (BAFA) vom 13.11.2012

Der Gesamtwärmeverbrauch setzt sich aus folgenden Punkten zusammen: Angaben zu gelieferten Gasmengen der Netzbetreiber, Hochrechnung des Wärmeverbrauches im privaten Wohngebäudesektor, Angaben der Verwaltung zu kommunalen Liegenschaften sowie statistischen Angaben über den Ölverbrauch der Industrie im Betrachtungsgebiet.

Mit einem jährlichen Anteil von ca. 92% des Gesamtwärmeverbrauches (ca. 115.000°MWh/a) stellen die Privaten Haushalte mit Abstand den größten Wärmeverbraucher der Verbandsgemeinde dar. An zweiter Stelle steht die Verbrauchergruppe Industrie, Gewerbe Handel und Dienstleistungen mit einem Anteil von ca. 7% (ca. 8.700°MWh/a). Kommunale Liegenschaften dagegen sind nur zu ca. 1% (ca. 910 MWh/a) am Gesamtwärmeverbrauch beteiligt.

Derzeit können etwa 5% des Gesamtwärmeverbrauches über erneuerbare Energieträger abgedeckt werden. Damit liegt der Anteil Erneuerbarer Energien an der Wärmebereitstellung unter dem Bundesdurchschnitt, der im Jahr 2011 bei 11% lag. 139 In der Verbandsgemeinde Thaleischweiler-Fröschen beinhaltet die Wärmeproduktion aus Erneuerbaren Energieträgern vor allem die Verwendung von Biomasse-Festbrennstoffen, solarthermischen Anlagen und Wärmepumpen. Die folgende Darstellung verdeutlicht, dass die Wärmeversorgung im IST-Zustand überwiegend auf fossilen Energieträgern basiert.

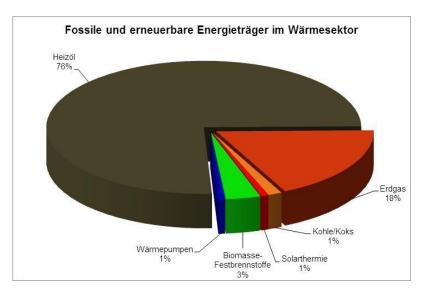


Abb. 5-2: der Wärmeerzeuger in der Verbandsgemeinde Thaleischweiler-Fröschen

5.1.1.3 Energieverbrauch im Sektor Verkehr

Im Vergleich zum Energieverbrauch und dem Ausstoß der THG-Emissionen von 1990 sind diese in 2012 nur um 6% gestiegen obwohl sich der Fahrzeugbestand im gleichen Zeitraum um 20% erhöht hat. Der geringe Anstieg des Energieverbrauchs und der THG-Emissionen ist auf Effizienzgewinne zurückzuführen. Bereits 2020 wird eine Reduktion um 5% (Energie) sowie 34% (Emissionen) durch effizientere Technologien, biogene Kraftstoffe und die Zielvorgabe der Bundesregierung von "1 Millionen Elektrofahrzeuge bis 2020 auf Deutschlands Straßen" erfolgen.

© IfaS 2013 67

...

¹³⁹ Vgl. BMU 2012: S. 14

Dieser Trend wird sich in den Folgejahren fortsetzen, sodass der Endenergieverbrauch bis zum Jahr 2050 auf jährlich rund 41.354 MWh/a fällt sowie die THG-Emissionen auf 0 t/a CO₂. Dies entspricht einer Reduktion von insgesamt ca. 59% (Energie) und 100% (Emissionen) gegenüber dem Basisjahr 1990.

Tab. 5-1: Energiebilanz der VG Thaleischweiler - Fröschen

Gesamt	1990	2012	2020	2030	2040	2050
Gesaint	MWh	MWh	MWh	MWh	MWh	MWh
Fossile Kraftstoffe	100.224,59	105.925,66	89.366,36	69.218,55	31.966,60	0,00
- Diesel	63.041,90	66.120,86	50.837,16	41.034,17	19.262,90	0,00
- Ottokraftstoff	37.182,68	37.091,33	35.209,24	25.661,66	12.005,16	0,00
- Erdgas	0,00	20,58	1.273,15	937,50	512,16	0,00
- Flüssiggas	0,00	2.692,89	2.046,82	1.585,22	186,38	0,00
Erneuerbare Kraftstoffe	0,00	0,00	6.134,09	13.953,40	28.676,07	41.354,24
- Bio-/Windgas	0,00	0,00	3.347,60	5.322,11	8.331,86	7.498,02
- Strom	0,00	0,00	2.786,49	8.631,29	20.344,21	33.856,22
Gesamt	100.224,59	105.925,66	95.500,45	83.171,95	60.642,67	41.354,24
Differenz zu 1990		5.701,07	-4.724,14	-17.052,64	-39.581,92	-58.870,35
Veränderung in Prozent		6%	-5%	-17%	-39%	-59%

Tab. 5-2: Emissionsbilanz der VG Thaleischweiler – Fröschen

Gesamt	1990	2012	2020	2030	2040	2050
Gesam	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2
Fossile Kraftstoffe	26.630,16	28.106,74	17.466,86	12.704,59	5.619,01	0,00
- Diesel	17.763,95	18.631,54	9.317,51	6.909,72	3.237,69	0,00
- Ottokraftstoff	8.866,21	8.840,91	7.358,89	5.217,95	2.231,13	0,00
- Erdgas	0,00	4,16	275,73	195,74	101,38	0,00
- Flüssiggas	0,00	630,14	514,72	381,18	48,82	0,00
Erneuerbare Kraftstoffe	0,00	0,00	0,00	0,00	0,00	0,00
- Bio-/Windgas	0,00	0,00	0,00	0,00	0,00	0,00
- Strom	0,00	0,00	0,00	0,00	0,00	0,00
Gesamt	26.630,16	28.106,74	17.466,86	12.704,59	5.619,01	0,00
Differenz zu 1990		1.476,58	-9.163,30	-13.925,57	-21.011,15	-26.630,16
Veränderung in Prozent		6%	-34%	-52%	-79%	-100%

5.1.1.4 Energieverbrauch im Sektor Abfall / Abwasser

Die Emissionen und Energieverbräuche des Sektors Abfall und Abwasser sind im Kontext des vorliegenden integrierten Klimaschutzkonzeptes sowie der dazugehörigen Treibhausgasbilanz als sekundär zu bewerten und werden aus diesem Grund größtenteils statistisch abgeleitet. Auf den Bereich Abfall und Abwasser ist weniger als 1% der Gesamtemissionen zurückzuführen.¹⁴⁰

Der Energieverbrauch im Bereich der Abfallwirtschaft lässt sich zum einen auf die Behandlung der anfallenden Abfallmengen und zum anderen auf den Abfalltransport zurückführen. Abgeleitet aus den verschiedenen Abfallfraktionen im Entsorgungsgebiet fielen in der Verbandgemeinde Thaleischweiler-Fröschen¹⁴¹ im Jahr 2011 insgesamt rund 4.400 t Abfall an.

© IfaS 2013 68

.

¹⁴⁰ Bezogen auf die nicht-energetischen Emissionen. Die Emissionen aus dem stationären Energieverbrauch und dem Verkehr sind bereits in den entsprechenden Kapiteln enthalten und werden nicht separat für den Abfall- und Abwasserbereich dargestellt.

stellt.

141 Vgl. Ministerium für Wirtschaft, Klimaschutz, Energie und Landesplanung Rheinland-Pfalz 2012

Die durch die Abfallbehandlung entstehenden THG-Emissionen im stationären- sowie im Transportbereich, finden sich im Rahmen der Energie- und Treibhausgasbilanz im Sektor Strom, Wärme und Verkehr wieder. Das deutschlandweite Verbot einer direkten Mülldeponierung seit 2005 und die gesteigerte Kreislaufwirtschaft führten dazu, dass die Emissionen, die dem Abfallsektor zuzurechnen waren, stark gesunken sind. Die Abfallentsorgung in Müllverbrennungsanlagen erfolgt vollständig unter energetischer Nutzung, sodass derzeit lediglich die Emissionen der Bio- und Grünabfälle mit einem Faktor von 17 kg CO₂e/t Abfall¹⁴² berechnet werden. Für das Betrachtungsgebiet konnte in dieser Fraktion eine Menge von 615 t/a ermittelt werden. Demnach werden jährlich ca. 10 t CO₂-e verursacht.

Die Energieverbräuche zur Abwasserbehandlung sind ebenfalls im stationären Bereich der Bilanz eingegliedert (Strom und Wärme) und fließen auch in diesen Sektoren in die Treibhausgasbilanz ein. Zusätzliche Emissionen entstehen aus der Abwasserreinigung (N₂O durch Denitrifikation) und der anschließenden Weiterbehandlung des Klärschlamms (stoffliche Verwertung). Gemäß den Einwohnerwerten (Berechnung der N₂O-Emissionen) für das Betrachtungsjahr 2011 sowie Angaben des Statistischen Landesamtes Rheinland-Pfalz zur öffentlichen Klärschlammentsorgung¹⁴³ wurden für den IST-Zustand der Abwasserbehandlung Emissionen in Höhe von ca. 212 t CO₂-e ermittelt.

5.1.2 Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern

Der Gesamtenergieverbrauch bildet sich als Summe der zuvor beschriebenen Teilbereiche und beträgt im abgeleiteten "IST-Zustand"¹⁴⁴ ca. 263.000 MWh/a. Der Anteil der Erneuerbaren Energien am stationären Verbrauch¹⁴⁵ (exklusive Verkehr) liegt in der Verbandsgemeinde durchschnittlich bei 7%. Die nachfolgende Grafik zeigt einen Gesamtüberblick über die derzeitigen Energieverbräuche auf, unterteilt nach Energieträgern und Sektoren:

¹⁴² Vgl. Difu 2011: S. 266

Vgl. Statistisches Landesamt Rheinland-Pfalz 2012

An dieser Stelle ist zu erwähnen, dass sich die Datenquellen der verschiedenen Bausteine zur Errechnung des Gesamtenergieverbrauches auf unterschiedliche Bezugsjahre beziehen. Da kein einheitliches Bezugsjahr über alle Datenquellen hinweg angesetzt werden konnte, hat der Konzeptersteller jeweils den aktuellsten Datensatz verwandt. In den betroffenen Verbrauchsbereichen wurde davon ausgegangen, dass sich die Verbrauchsmengen in den letzten Jahren nicht signifikant verändert haben.

¹⁴⁵ Hier wird der Vergleich mit dem stationären Energieverbrauch herangezogen, da im IST-Zustand mit der gegebenen Statistik keine erneuerbaren Energieträger als Treibstoff zu ermitteln waren.

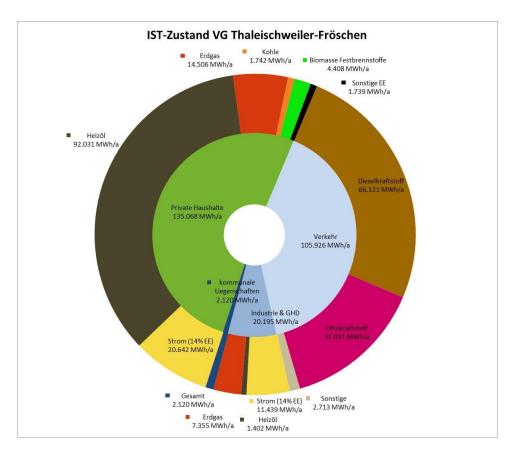


Abb. 5-3: Gesamtenergieverbrauch der Verbandsgemeinde Thaleischweiler-Fröschen im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren

Die zusammengefügte Darstellung der Energieverbräuche nach Verbrauchergruppen lässt erste Rückschlüsse über die dringlichsten Handlungssektoren des Klimaschutzkonzeptes zu. Das derzeitige Versorgungssystem ist augenscheinlich durch den Einsatz fossiler Energieträger geprägt. Für die regenerativen Energieträger ergibt sich demnach ein großer Ausbaubedarf. Des Weiteren lässt sich ableiten, dass die kommunalen Liegenschaften und Einrichtungen des Betrachtungsgebietes aus energetischer Sicht nur in geringem Maße zur Bilanzoptimierung beitragen können. Dennoch wird die Optimierung dieses Bereiches – insbesondere in Hinblick auf die Vorbildfunktion der Verbandsgemeinde gegenüber den weiteren Verbrauchergruppen – als besonders notwendig erachtet.

Den größten Energieverbrauch mit ca. 135.000°MWh/a verursachen in der Verbandsgemeinde Thaleischweiler-Fröschen die Privaten Haushalte. Folglich entsteht hier auch der größte Handlungsbedarf, welcher sich vor allem im Einsparpotenzial der fossilen Wärmeversorgung widerspiegelt. Zweitgrößte Verbrauchergruppe ist der Verkehrssektor mit einem ermittelten Verbrauch von ca. 106.000°MWh/a. Im Hinblick auf die Verbrauchsgruppe Industrie und GHD entsteht ein Energieverbrauch von ca. 20.000°MWh/a. Die Verbandsgemeinde kann auf diese Verbrauchssektoren einen indirekten Einfluss nehmen, um die Energiebilanz und die damit einhergehenden ökologischen und ökonomischen Effekte zu verbessern.

5.1.3 Treibhausgasemissionen der Verbandsgemeinde Thaleischweiler-Fröschen

Ziel der Treibhausgasbilanzierung auf kommunaler Ebene ist es, spezifische Referenzwerte für zukünftige Emissionsminderungsprogramme zu erheben. In der vorliegenden Bilanz werden auf Grundlage der zuvor erläuterten verbrauchten Energiemengen die territorialen Treibhausgasemissionen (CO₂e) in den Bereichen Strom, Wärme, Verkehr sowie Abfall und Abwasser quantifiziert. Die folgende Darstellung bietet einen Gesamtüberblick der relevanten Treibhausgasemissionen der Verbandsgemeinde, welche sowohl für den IST-Zustand als auch für das Basisjahr 1990 errechnet wurden.

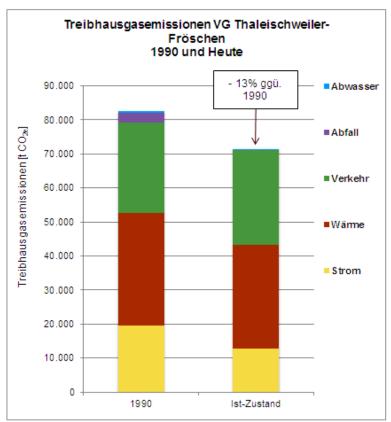


Abb. 5-4: Treibhausgasemissionen der Verbandsgemeinde Thaleischweiler-Fröschen (1990 und IST-Zustand)

Im Referenzjahr 1990 wurden aufgrund des Energieverbrauches¹⁴⁶ der Verbandsgemeinde ca. 83.000°t CO₂-e emittiert. Für den ermittelten IST-Zustand wurden jährlich Emissionen von etwa 72.000 t/CO₂-e kalkuliert. Gegenüber dem Basisjahr 1990 konnten somit bereits ca. 13% der Emissionen eingespart werden.

¹⁴⁶ Im Rahmen der retrospektiven Bilanzierung für das Basisjahr 1990 konnte auf keine Primärdatensätze zurückgegriffen werden. Der Stromverbrauch wurde anhand des Gesamtstromverbrauches von Rheinland-Pfalz (Vgl. Statistisches Landesamt Rheinland-Pfalz 2012: S. 18) über Einwohneräquivalente und Pro-Kopf-Verbrauchsentwicklungen von Rheinland-Pfalz auf 1990 rückgerechnet. Der Wärmeverbrauch der Privaten Haushalte konnte auf statistischer Grundlage zur Verteilung der Feuerungsanlagen und Wohngebäude (Zensus 1987) auf das Basisjahr zurückgerechnet werden. Die Rückrechnung für den Sektor Industrie & GHD erfolgte über die Erwerbstätigen am Arbeitsort (Vgl. AK ETR 2010). Dabei wurde von heutigen Verbrauchsdaten ausgegangen. Die Emissionen im Sektor Verkehr konnten durch die Zulassungen und Verbrauchswerte des Fahrzeugbestandes im Jahr 1990 berechnet werden. Verbrauchsdaten im Abfall- und Abwasserbereich wurden auf Grundlage der Landesstatistiken (Vgl. Ministerium für Umwelt, Forsten und Verbraucherschutz o.J.: S. 13 ff. und Statistisches Landesamt Rheinland-Pfalz 2012: S.4) in diesem Bereich auf 1990 rückgerechnet.

Große Einsparungen entstanden vor allem im Strombereich, welche sowohl auf den Ausbau der Photovoltaik- und Wasserkraftanlagen als auch auf eine bundesweite Verbesserung des anzusetzenden Emissionsfaktors im Stromsektor zurückzuführen sind. 147 Im Stromsektor kann demnach von einer Reduktionsentwicklung von ca. 34% ausgegangen werden.

Insgesamt stellt der Wärmebereich derzeit mit ca. 42% den größten Verursacher der Treibhausgasemissionen dar und bietet den größten Ansatzpunkt für Einsparungen, welche im weiteren Verlauf des Klimaschutzkonzeptes (insbesondere im Maßnahmenkatalog) erläutert werden.

5.2 Energieeffizienz

In der Verbandsgemeinde Thaleischweiler-Fröschen befinden sich zum Jahr 2010 insgesamt 3.845 Wohngebäude mit einer Wohnfläche von ca. 580.000 m². Die Gebäudestruktur teilt sich in 69% Einfamilienhäuser, 27% Zweifamilienhäuser und 4% Mehrfamilienhäuser.

Die folgende Tabelle gibt einen Überblick des Wohngebäudebestandes der VG (nach Baualtersklassen unterteilt).

Tab. 5-3: Wohngebäudebestand der VG Thaleischweiler-Fröschen nach Baualtersklassen 149

Altersklasse	Prozentualer Anteil	Wohngebäude nach Altersklassen	Davon Ein- und Zweifamilienhäuser	Davon Mehrfamilienhäuser
bis 1918	15,21%	585	562	23
1919 - 1948	12,78%	491	472	19
1949 - 1978	42,63%	1.639	1.576	64
1979 - 1990	14,80%	569	547	22
1991 - 2000	10,72%	412	396	16
2001 - Heute	3,86%	148	143	6
Gesamt	100%	3.845	3.696	149

Insgesamt existieren in der Verbandsgemeinde 3.332 Primärheizer und 1.540 Sekundärheizer (z. B. Holzeinzelöfen). Die Verteilung der Heizenergieanlagen ist in nachfolgender Tabelle dargestellt.

© IfaS 2013 72

_

 $^{^{147}}$ Für das Jahr 1990 wurde ein CO₂-e-Faktor von 683 g/kWh exklusive der Vorketten berechnet. Berechnungsgrundlage ist an dieser Stelle Gemis 4.7 in Anlehnung an die Kraftwerksstruktur zur Stromerzeugung im Jahr 1990 (Vgl. BMU 2010) 148 Vgl. Statistisches Landesamt Rheinland-Pfalz, 2010

Vgl. Destatis, schriftliche Mitteilung von Frau Leib-Manz (Bereich Bautätigkeiten), Verteilung innerhalb der Baualtersklassen
 Tabelle zur Aufteilung des Deutschen Wohngebäudebestandes nach Bundesländern und Baualtersklassen, am 15.09.2010.

Tab. 5-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträger

Energieträger	Primärheizer	Sekundärheizer
Öl	2.818	529
Gas	453	5
Strom	61	239
Kohle, Holz		767
Summe	3.332	1.540
Gesamt	4.8	372

Außerdem gibt es in der VG noch 46 Wärmepumpen und durch das Marktanreizprogramm geförderte Biomasseanlagen mit insgesamt 1.525 kW installierter Leistung.

Es ergibt sich ein gesamter Heizwärmeverbrauch der privaten Wohngebäude innerhalb der Verbandsgemeinde von derzeit 115 GWh/a.

Insbesondere bei veralteten Heizungsanlagen ist ein hohes Einsparpotenzial vorhanden. Folgende Tabelle stellt die Anzahl der Anlagen für Öl- und Gasheizungen nach Baualtersklassen dar:

Tab. 5-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen

	Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen							
	bis 1978 1979-1982 1983-1988 1988-1997 1998-2008 ab 200							
ÖI	181	133	406	1.217	857	24		
Gas	8	14	55	231	141	5		

Eigene Liegenschaften:

Aufgrund eines Heizwärmeverbrauchs der auswertbaren 14 eigenen Gebäude in der Verbandsgemeinde (siehe Tab. 5-6) von 610 MWh im Jahr 2011 (bei 4.200 m² Nutzfläche), wurden für die einzelnen Gebäude der spezifische Heizwärmeverbrauch in kWh/(m²*a) ermittelt und in folgender Abbildung dargestellt.

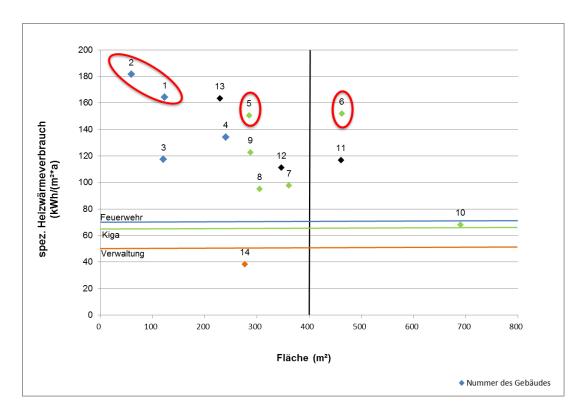


Abb. 5-5: VG Thaleischweiler-Fröschen – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche

Tab. 5-6: Übersicht Öffentliche Liegenschaften

Nr.	Öffentliche Liegenschaften
1	Feuerwehrgerätehaus Höhfröschen
2	Feuerwehrgerätehaus Petersberg
3	Feuerwehrgerätehaus Reifenberg
4	Feuerwehrgerätehaus Rieschweiler-Mühlbach
5	Kindergarten Schwalbennest
6	Kindergarten Sonnenschein
7	Kindertagesstätte Maßweiler
8	Kindergarten Abenteuerland
9	Kindergarten Apfelbäumchen
10	Kindergarten Kuckucksnest
11	Mietwohngrundstück Thaleischweiler-Fröschen
12	gemischtes Grundstück Thaleischweiler-Fröschen
13	Mietwohngrundstück Höheischweiler
14	Rathaus Maßweiler

Tab. 5-7: Gebäude mit hohen Wärmeverbräuchen

Nr.	Gebäude	BGF (m²)	Verbrauch (kWh/a)
1	Feuerwehrgerätehaus Höhfröschen	123	25.848
2	Feuerwehrgerätehaus Petersberg	59	13.730
5	Kindergarten Schwalbennest	285	54.758
6	Kindergarten Sonnenschein	462	89.750

Die Gesamtleistung der 19 Heizungsanlagen beträgt 1.473 kW und verteilt sich auf die einzelnen Energieträger wie in folgender Tabelle dargestellt:

Tab. 5-8: Leistung der Heizungsanlagen nach Energieträger

Energieträger	Anzahl	Leistung (kW)
ÖI	8	438
Gas	7	571
Holzhackschnitzel	1	300
Flüssiggas	2	25
Elektro	1	140
Summe	19	1.473

5.3 Erneuerbarer Energien

5.3.1 Photovoltaikpotenzial auf Freiflächen

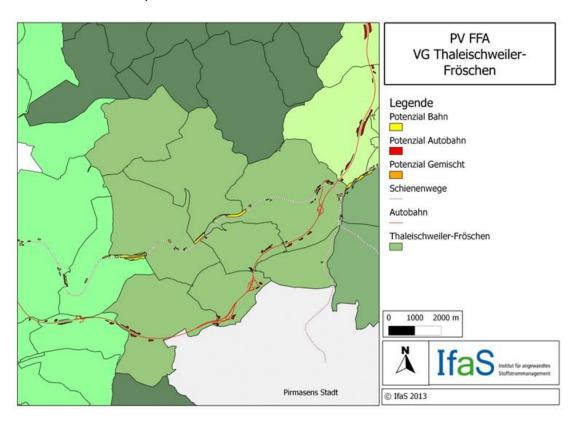


Abb. 5-6: Photovoltaikpotenzial auf Freiflächen VG Thaleischweiler-Fröschen

Tab. 5-9: Photovoltaikpotenzial auf Freiflächen VG Thaleischweiler-Fröschen

	Ausbaupotenziale PV-FFA					
Standorttyp	Anzahl (Stück)	Fläche (m²)	Install. Leistung ¹ (kWp)	Stromerträge ² (MWh/a)		
Schienenwege	27	291.000	11.600	10.400		
Autobahn	29	114.000	4.600	4.100		
Schnittmenge (Autobahn u. Schienenwege)	4	12.000	500	500		
Gesamt	60	417.000	16.700	15.000		
1: 25 m²/kWP	2: 900 kWh*a/kWP					

5.3.2 Solarenergiepotenzial auf Dachflächen

Tab. 5-10: Solarenergiepotenzial auf Dachflächen VG Thaleischweiler-Fröschen

	Ausbaupotenziale Solarenergie auf Dachflächen						
Photov		Solarthermie					
Installierbare Leistung ¹ (kWp)	Stromerträge (MWh/a)	Kollektorfläche ² (m²)	Wärmeerträge ³ (MWh/a)	Heizöläquivalente ⁴ (I)			
30.000	25.900	59.000	22.100	2.770.000			
1) 7 m² pro kWp Dickschicht/12	,5 m² pro kWp Dünnschicht	5) Techn. Potenzia	l - Bestand = Ausbau	potenzial			
2) 14 m² Solarthermie pro Dachfläche		Bestand ST: Angaben der BAFA zu geförderten Anlagen					
3) Ertrag von 350 kWh/m² Solart	hermie	Bestand PV: Angaben aus EEG Anlagenregister 2011					
4) Verdrängung Ölheizung		Werte auf volle hu	ndert gerundet				

5.3.3 Windenergiepotenzial

Tab. 5-11: Windenergiepotenzial VG Thaleischweiler-Fröschen

Ausbaupotenziale Windenergie						
Potenzialfläche (ha)	Anteil (%)	mögliche WEA	Install. Leistung (MW)	Stromerträge (GWh/a)		
452	4	31	71,3	152		

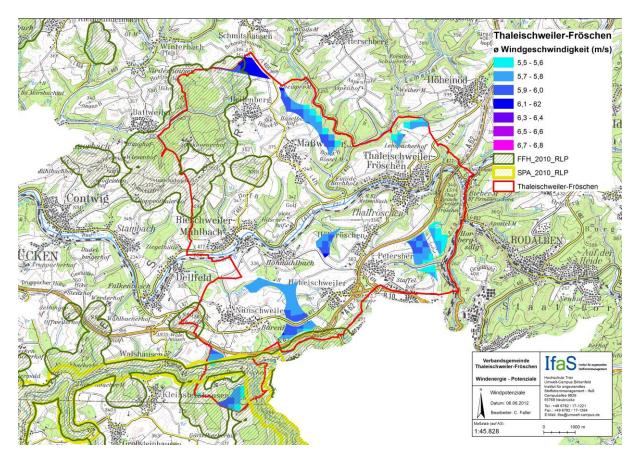
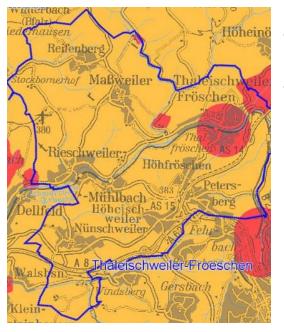



Abb. 5-7: Windenergiepotenzial VG Thaleischweiler-Fröschen

5.3.4 Geothermiepotenzial

In der VG befindet sich ein kritisches Gebiet, welches sich in der Ortsgemeinde Thaleischweiler-Fröschen befindet. Der restliche Teil der VG liegt auf Bereichen, die mit zusätzlichen Auflagen meist genehmigungsfähig sind.

5.3.5 Biomassepotenzial

Tab. 5-12: Biomassepotenzial VG Thaleischweiler-Fröschen

Ausbaupotenziale Biomasse							
Festbrennstoffe Fortst	Festbrennstoffe aus Ackerflächen	Festbrennstoffe aus Grünschnitt und Landschaftspfle	Biogassubstrate	Biogassubstrate aus Ackerflächen	Biogassubstrate aus Dauergrünland	Biogassubstrate organische Abfälle	Gesamt
[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]
5.052	7.682	1.620	4.208	6.184	0	793	25.539

5.3.6 Wasserkraftpotenzial

Tab. 5-13: Wasserkraftpotenzial VG Thaleischweiler-Fröschen

Ausbaupotenziale Wasserkraft					
Gewässer	Name der Anlage	installierte Leistung	Arbeits- vermögen	Volllast- stunden	Bundes- durchschnitt
		[kW]	[kWh/a]	[h]	[h]
Schwarzbach	Rieschweilermühle Sties	75	131.814	1.785	3.500

6 Verbandsgemeinde Waldfischbach-Burgalben

6.1 Energie- und Treibhausgasbilanzierung (Startbilanz)

Um Klimaschutzziele innerhalb eines Betrachtungsraumes quantifizieren zu können, ist es unerlässlich, die Energieversorgung, den Energieverbrauch sowie die unterschiedlichen Energieträger zu bestimmen. Die Analyse bedarf der Berücksichtigung einer fundierten Datengrundlage und muss sich darüber hinaus statistischer Berechnungen¹⁵⁰ bedienen, da keine vollständige Erfassung der Verbrauchs- und Produktionsdaten für die Verbandsgemeinde Waldfischbach-Burgalben vorliegt.

Die Betrachtung der Energiemengen bezieht sich im Rahmen des Konzeptes auf die Form der Endenergie (z. B. Heizöl, Holzpellets, Strom). Die verwendeten Emissionsfaktoren beziehen sich auf die relevanten Treibhausgase CO₂, CH₄ sowie N₂O und werden als CO₂-Äquivalente¹⁵¹ (CO₂e) ausgewiesen. Die Faktoren stammen aus dem Globalen Emissions-Modell integrierter Systeme (GEMIS) in der Version 4.7¹⁵² und sind als Anhang (Erläuterung zu den Wirkungsanalysen) zur Einsicht hinterlegt. Sie beziehen sich ebenfalls auf den Endenergieverbrauch und berücksichtigen keine Vorketten z. B. aus der Anlagenproduktion oder der Brennstoffbereitstellung. Das vorliegende Konzept bezieht sich im Wesentlichen systematisch auf das Gebiet der Verbandsgemeinde. Dementsprechend ist die Energie- und Treibhausgasbilanzierung nach der Methodik einer "endenergiebasierten Territorialbilanz" aufgebaut, welche im Praxisleitfaden "Klimaschutz in Kommunen" für die Erstellung von Klimaschutzkonzepten nahegelegt wird. Die Betrachtung der Energiemengen bezieht sich vor diesem Hintergrund auf die Form der Endenergie. 154

Im Folgenden werden die Gesamtenergieverbräuche sowie die derzeitigen Energieversorgungsstrukturen der Verbandsgemeinde Waldfischbach-Burgalben im IST-Zustand analysiert.

6.1.1 Analyse des Gesamtenergieverbrauches und der Energieversorgung

Mit dem Ziel, den Energieverbrauch und die damit einhergehenden Treibhausgasemissionen der Verbandsgemeinde im IST-Zustand abzubilden, werden an dieser Stelle die Bereiche

¹⁵⁰ Im Klimaschutzkonzept erfolgen insbesondere die Berechnungen für das ausgewählte Basisjahr 1990 anhand statistischer Daten

¹⁵¹ N₂O und CH₄ wurden in CO₂-Äquivalente umgerechnet (Vgl. IPCC 2007: S. 36)

¹⁵² Vgl. Fritsche und Rausch 2011

¹⁵³ Vgl. Difu 2011; Der Klimaschutzleitfaden spricht Empfehlungen zur Bilanzierungsmethodik im Rahmen von Klimaschutzkonzepten aus. Das IfaS schließt sich im vorliegenden Fall dieser Methodik an, da die Empfehlungen des Praxisleitfadens unter anderem durch das Umweltbundesamt (UBA) sowie das Forschungszentrum Jülich GmbH (PTJ) fachlich unterstützt wurden.

¹⁵⁴ Des Weiteren ermöglicht die Betrachtung der Endenergie eine höhere Transparenz auch für fachfremde Betroffene und Interessierte, da ein Bezug eher zur Endenergie besteht und keine Rückrechnung von Endenergie zur Primärenergie nachvollzogen werden muss.

Strom, Wärme, Verkehr sowie Abfall und Abwasser hinsichtlich ihrer Verbrauchs- und Versorgungsstrukturen analysiert. 155

6.1.1.1 Gesamtstromverbrauch und Stromerzeugung

Zur Ermittlung des Stromverbrauches des Betrachtungsgebietes wurden die zur Verfügung gestellten Daten des zuständigen Netzbetreibers¹⁵⁶ über die gelieferten und durchgeleiteten Strommengen an private, kommunale sowie gewerbliche und industrielle Abnehmer herangezogen. 157 Die vorliegenden Verbrauchsdaten gehen auf das Jahr 2011 zurück und weisen einen Gesamtstromverbrauch von rund 70.000 MWh/a für die Verbandsgemeinde aus.

Mit einem jährlichen Verbrauch von rund 47.200 MWh weist die Verbrauchergruppe Industrie, Gewerbe Handel und Dienstleistungen den höchsten Stromverbrauch der Verbandsgemeinde auf. Im Bereich Private Haushalte werden jährlich ca. 21.400 MWh benötigt. Gemessen am Gesamtstromverbrauch stellen die kommunalen Liegenschaften 158 mit einer jährlichen Verbrauchsmenge von rund 1.000 MWh erwartungsgemäß die kleinste Verbrauchsgruppe des Betrachtungsgebietes dar (siehe dazu Abb. 6-3)¹⁵⁹

Heute werden bilanziell betrachtet ca. 37% des Gesamtstromverbrauches der Verbandsgemeinde aus erneuerbarer Stromproduktion gedeckt. Damit liegt der Anteil Erneuerbarer Energien an der Stromproduktion deutlich über dem Bundesdurchschnitt von 20,3% im Jahr 2011.¹⁶⁰ Die lokale Stromproduktion speist sich vor allem aus der Nutzung von Windkraftund Photovoltaikanlagen. Die folgende Abbildung zeigt den derzeitigen Beitrag der Erneuerbaren Energien im Verhältnis zum Gesamtstromverbrauch auf:

¹⁵⁵ Detailangaben zu den Berechnungsparametern sind der Erläuterung zu den Wirkungsanalysen im Anhang zu entnehmen.

¹⁵⁶ In diesem Fall ist der zuständige Netzbetreiber für den Landkreis Südwestpfalz: Für die A-Gemeinden die gemeindeeigenen Elektrizitätswerke; für alle anderen die Pfalzwerke AG.

Die Daten wurden in folgender Aufteilung übermittelt: Straßenbeleuchtung, Speicherheizung, Gewerbe, öffentliche Liegenschaften und Private Haushalte.

¹⁵⁸ Auf Verbandsgemeindeebene werden nur die kommunalen Liegenschaften betrachtet (ohne die Kreiseigenen).

Die angegebenen Verbrauchswerte innerhalb der Sektoren wurden mit Excel von kWh auf MWh abgerundet, aus diesem Grund kann es zu rundungsbedingten Abweichungen in Bezug auf die Gesamtverbrauchsmenge kommen. ¹⁶⁰ Vgl. BMU 2012: S. 12

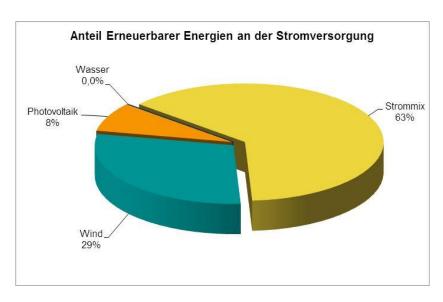


Abb. 6-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Waldfischbach-Burgalben

6.1.1.2 Gesamtwärmeverbrauch und Wärmeerzeugung

Die Ermittlung des Gesamtwärmebedarfes auf dem Gebiet der Verbandsgemeinde stellt sich im Vergleich zur Stromverbrauchsanalyse deutlich schwieriger dar. Neben konkreten Verbrauchszahlen für leitungsgebundene Wärmeenergie (Erdgas) kann in der Gesamtbetrachtung aufgrund einer komplexen und zum Teil nicht leitungsgebundenen Versorgungsstruktur lediglich eine Annäherung an tatsächliche Verbrauchswerte erfolgen. Zur Ermittlung des Wärmebedarfes auf Basis leitungsgebundener Energieträger wurden Verbrauchsdaten über die Erdgasliefermengen im Verbrauchsgebiet der Verbandsgemeinde für das Jahr 2011 des Netzbetreibers¹⁶¹ herangezogen. Ferner wurden für die Ermittlung des Wärmebedarfes im privaten Wohngebäudebestand die Daten des Zensus 87¹⁶² und der Baufertigstellungsstatistik 1990 bis 2010¹⁶³ betrachtet und ausgewertet (vgl. dazu Kapitel 6.2).

Des Weiteren wurden die durch das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) gelieferten Daten über geförderte innovative Erneuerbare-Energien-Anlagen (Solarthermie-Anlagen¹⁶⁴, mechanisch beschickte Bioenergieanlagen¹⁶⁵, Wärmepumpen¹⁶⁶, KWK-Anlagen¹⁶⁷) bis zum Jahr 2012 herangezogen.

Insgesamt konnte für die Verbandsgemeinde ein jährlicher Gesamtwärmeverbrauch von rund 170.000 MWh ermittelt werden. 168

© IfaS 2013 82

_

¹⁶¹ In diesem Fall ist der zuständige Netzbetreiber für den gesamten Landkreis: Die Pfalzgas GmbH

¹⁶² Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: a

¹⁶³ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: b und c

¹⁶⁴ Vgl. Webseite Solaratlas

¹⁶⁵ Vgl. Webseite Biomasseatlas

¹⁶⁶ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J. c

¹⁶⁷ Vgl. Datenübermittlung Alfred Smuck (BAFA) vom 13.11.2012

Der Gesamtwärmeverbrauch setzt sich aus folgenden Punkten zusammen: Angaben zu gelieferten Gasmengen der Netzbetreiber, Hochrechnung des Wärmeverbrauches im privaten Wohngebäudesektor, Angaben der Verwaltung zu kommunalen Liegenschaften sowie statistischen Angaben über den Ölverbrauch der Industrie im Betrachtungsgebiet.

Mit einem jährlichen Anteil von ca. 79% des Gesamtwärmeverbrauches (ca. 134.000°MWh/a) stellen die Privaten Haushalte mit Abstand den größten Wärmeverbraucher der Verbandsgemeinde dar. An zweiter Stelle steht die Verbrauchergruppe Industrie, Gewerbe Handel und Dienstleistungen mit einem Anteil von ca. 17% (ca. 29.400°MWh/a). Kommunale Liegenschaften dagegen sind nur zu ca. 4% (ca. 6.000 MWh/a) am Gesamtwärmeverbrauch beteiligt.

Derzeit können etwa 9% des Gesamtwärmeverbrauches über erneuerbare Energieträger abgedeckt werden. Damit liegt der Anteil Erneuerbarer Energien an der Wärmebereitstellung unter dem Bundesdurchschnitt, der im Jahr 2011 bei 11% lag. 169 In der Verbandsgemeinde Waldfischbach-Burgalben beinhaltet die Wärmeproduktion aus Erneuerbaren Energieträgern vor allem die Verwendung von Biomasse-Festbrennstoffen, solarthermischen Anlagen und Wärmepumpen. Die folgende Darstellung verdeutlicht, dass die Wärmeversorgung im IST-Zustand überwiegend auf fossilen Energieträgern basiert.

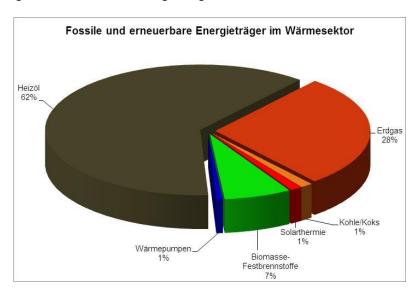


Abb. 6-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Waldfischbach-Burgalben

6.1.1.3 Energieverbrauch im Sektor Verkehr

Im Vergleich zum Energieverbrauch und dem Ausstoß der THG-Emissionen von 1990 sind diese in 2012 nur um 6% gestiegen obwohl sich der Fahrzeugbestand im gleichen Zeitraum um 20% erhöht hat. Der geringe Anstieg des Energieverbrauchs und der THG-Emissionen ist auf Effizienzgewinne zurückzuführen. Bereits 2020 wird eine Reduktion um 5% (Energie) sowie 34% (Emissionen) durch effizientere Technologien, biogene Kraftstoffe und die Zielvorgabe der Bundesregierung von "1 Millionen Elektrofahrzeuge bis 2020 auf Deutschlands Straßen" erfolgen.

© IfaS 2013 83

4.0

¹⁶⁹ Vgl. BMU 2012: S. 14

Dieser Trend wird sich in den Folgejahren fortsetzen, sodass der Endenergieverbrauch bis zum Jahr 2050 auf jährlich rund 46.959 MWh/a fällt sowie die THG-Emissionen auf 0 t/a CO₂. Dies entspricht einer Reduktion von insgesamt ca. 59% (Energie) und 100% (Emissionen) gegenüber dem Basisjahr 1990.

Tab. 6-1: Energiebilanz der VG Waldfischbach – Burgalben

Gesamt	1990	2012	2020	2030	2040	2050
Gesaint	MWh	MWh	MWh	MWh	MWh	MWh
Fossile Kraftstoffe	113.695,63	120.260,42	101.425,65	78.579,50	36.292,14	0,00
- Diesel	71.696,02	75.330,71	57.830,27	46.686,86	21.916,20	0,00
- Ottokraftstoff	41.999,61	42.219,60	39.828,82	29.027,93	13.580,11	0,00
- Erdgas	0,00	23,45	1.446,09	1.066,33	583,50	0,00
- Flüssiggas	0,00	2.686,67	2.320,47	1.798,39	212,34	0,00
Erneuerbare Kraftstoffe	0,00	0,00	6.970,61	15.836,90	32.551,06	46.959,67
- Bio-/Windgas	0,00	0,00	3.800,70	6.038,67	9.463,66	8.516,06
- Strom	0,00	0,00	3.169,91	9.798,22	23.087,40	38.443,60
Gesamt	113.695,63	120.260,42	108.396,27	94.416,39	68.843,21	46.959,67
Differenz zu 1990		6.564,80	-5.299,36	-19.279,23	-44.852,42	-66.735,96
Veränderung in Prozent		6%	-5%	-17%	-39%	-59%

Tab. 6-2: Emissionsbilanz der VG Waldfischbach – Burgalben

Gesamt	1990	2012	2020	2030	2040	2050
Gesam	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2
Fossile Kraftstoffe	30.217,31	31.923,36	19.814,16	14.415,13	6.377,20	0,00
- Diesel	20.202,50	21.226,69	10.592,42	7.857,10	3.682,16	0,00
- Ottokraftstoff	10.014,81	10.063,26	8.324,47	5.902,57	2.523,93	0,00
- Erdgas	0,00	4,74	313,32	222,71	115,50	0,00
- Flüssiggas	0,00	628,68	583,94	432,75	55,62	0,00
Erneuerbare Kraftstoffe	0,00	0,00	0,00	0,00	0,00	0,00
- Bio-/Windgas	0,00	0,00	0,00	0,00	0,00	0,00
- Strom	0,00	0,00	0,00	0,00	0,00	0,00
Gesamt	30.217,31	31.923,36	19.814,16	14.415,13	6.377,20	0,00
Differenz zu 1990		1.706,05	-10.403,15	-15.802,19	-23.840,11	-30.217,31
Veränderung in Prozent		6%	-34%	-52%	-79%	-100%

6.1.1.4 Energieverbrauch im Sektor Abfall / Abwasser

Die Emissionen und Energieverbräuche des Sektors Abfall und Abwasser sind im Kontext des vorliegenden integrierten Klimaschutzkonzeptes sowie der dazugehörigen Treibhausgasbilanz als sekundär zu bewerten und werden aus diesem Grund größtenteils statistisch abgeleitet. Auf den Bereich Abfall und Abwasser ist weniger als 1% der Gesamtemissionen zurückzuführen.¹⁷⁰

Der Energieverbrauch im Bereich der Abfallwirtschaft lässt sich zum einen auf die Behandlung der anfallenden Abfallmengen und zum anderen auf den Abfalltransport zurückführen. Abgeleitet aus den verschiedenen Abfallfraktionen im Entsorgungsgebiet fielen in der Verbandgemeinde Waldfischbach-Burgalben¹⁷¹ im Jahr 2011 insgesamt rund 5.000 t Abfall an.

¹⁷⁰ Bezogen auf die nicht-energetischen Emissionen. Die Emissionen aus dem stationären Energieverbrauch und dem Verkehr sind bereits in den entsprechenden Kapiteln enthalten und werden nicht separat für den Abfall- und Abwasserbereich dargestellt.

stellt.

171 Vgl. Ministerium für Wirtschaft, Klimaschutz, Energie und Landesplanung Rheinland-Pfalz 2012

Die durch die Abfallbehandlung entstehenden THG-Emissionen im stationären- sowie im Transportbereich, finden sich im Rahmen der Energie- und Treibhausgasbilanz im Sektor Strom, Wärme und Verkehr wieder. Das deutschlandweite Verbot einer direkten Mülldeponierung seit 2005 und die gesteigerte Kreislaufwirtschaft führten dazu, dass die Emissionen, die dem Abfallsektor zuzurechnen waren, stark gesunken sind. Die Abfallentsorgung in Müllverbrennungsanlagen erfolgt vollständig unter energetischer Nutzung, sodass derzeit lediglich die Emissionen der Bio- und Grünabfälle mit einem Faktor von 17 kg CO₂e/t Abfall¹⁷² berechnet werden. Für das Betrachtungsgebiet konnte in dieser Fraktion eine Menge von 700 t/a ermittelt werden. Demnach werden jährlich ca. 12 t CO₂-e verursacht.

Die Energieverbräuche zur Abwasserbehandlung sind ebenfalls im stationären Bereich der Bilanz eingegliedert (Strom und Wärme) und fließen auch in diesen Sektoren in die Treibhausgasbilanz ein. Zusätzliche Emissionen entstehen aus der Abwasserreinigung (N₂O durch Denitrifikation) und der anschließenden Weiterbehandlung des Klärschlamms (stoffliche Verwertung). Gemäß den Einwohnerwerten (Berechnung der N₂O-Emissionen) für das Betrachtungsjahr 2011 sowie Angaben des Statistischen Landesamtes Rheinland-Pfalz zur öffentlichen Klärschlammentsorgung¹⁷³ wurden für den IST-Zustand der Abwasserbehandlung Emissionen in Höhe von ca. 212 t CO₂-e ermittelt.

6.1.2 Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern

Der Gesamtenergieverbrauch bildet sich als Summe der zuvor beschriebenen Teilbereiche und beträgt im abgeleiteten "IST-Zustand"¹⁷⁴ ca. 359.000 MWh/a. Der Anteil der Erneuerbaren Energien am stationären Verbrauch¹⁷⁵ (exklusive Verkehr) liegt in der Verbandsgemeinde durchschnittlich bei 17%. Die nachfolgende Grafik zeigt einen Gesamtüberblick über die derzeitigen Energieverbräuche auf, unterteilt nach Energieträgern und Sektoren:

¹⁷² Vgl. Difu 2011: S. 266

Vgl. Statistisches Landesamt Rheinland-Pfalz 2012

An dieser Stelle ist zu erwähnen, dass sich die Datenquellen der verschiedenen Bausteine zur Errechnung des Gesamtenergieverbrauches auf unterschiedliche Bezugsjahre beziehen. Da kein einheitliches Bezugsjahr über alle Datenquellen hinweg angesetzt werden konnte, hat der Konzeptersteller jeweils den aktuellsten Datensatz verwandt. In den betroffenen Verbrauchsbereichen wurde davon ausgegangen, dass sich die Verbrauchsmengen in den letzten Jahren nicht signifikant verändert haben.

¹⁷⁵ Hier wird der Vergleich mit dem stationären Energieverbrauch herangezogen, da im IST-Zustand mit der gegebenen Statistik keine erneuerbaren Energieträger als Treibstoff zu ermitteln waren.

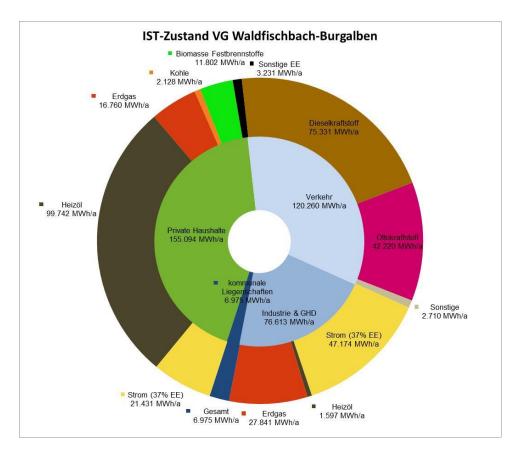


Abb. 6-3: Gesamtenergieverbrauch der Verbandsgemeinde Waldfischbach-Burgalben im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren

Die zusammengefügte Darstellung der Energieverbräuche nach Verbrauchergruppen lässt erste Rückschlüsse über die dringlichsten Handlungssektoren des Klimaschutzkonzeptes zu. Das derzeitige Versorgungssystem ist augenscheinlich durch den Einsatz fossiler Energieträger geprägt. Für die regenerativen Energieträger ergibt sich demnach ein großer Ausbaubedarf. Des Weiteren lässt sich ableiten, dass die kommunalen Liegenschaften und Einrichtungen des Betrachtungsgebietes aus energetischer Sicht nur in geringem Maße zur Bilanzoptimierung beitragen können. Dennoch wird die Optimierung dieses Bereiches – insbesondere in Hinblick auf die Vorbildfunktion der Verbandsgemeinde gegenüber den weiteren Verbrauchergruppen – als besonders notwendig erachtet.

Den größten Energieverbrauch mit ca. 155.000°MWh/a verursachen in der Verbandsgemeinde Waldfischbach-Burgalben die Privaten Haushalte. Folglich entsteht hier auch der größte Handlungsbedarf, welcher sich vor allem im Einsparpotenzial der fossilen Wärmeversorgung widerspiegelt. Zweitgrößte Verbrauchergruppe ist der Verkehrssektor mit einem ermittelten Verbrauch von ca. 120.000°MWh/a. Im Hinblick auf die Verbrauchsgruppe Industrie und GHD entsteht ein Energieverbrauch von ca. 77.000°MWh/a. Die Verbandsgemeinde kann auf diese Verbrauchssektoren einen indirekten Einfluss nehmen, um die Energiebilanz und die damit einhergehenden ökologischen und ökonomischen Effekte zu verbessern.

6.1.3 Treibhausgasemissionen der Verbandsgemeinde Waldfischbach-Burgalben

Ziel der Treibhausgasbilanzierung auf kommunaler Ebene ist es, spezifische Referenzwerte für zukünftige Emissionsminderungsprogramme zu erheben. In der vorliegenden Bilanz werden auf Grundlage der zuvor erläuterten verbrauchten Energiemengen die territorialen Treibhausgasemissionen (CO₂e) in den Bereichen Strom, Wärme, Verkehr sowie Abfall und Abwasser quantifiziert. Die folgende Darstellung bietet einen Gesamtüberblick der relevanten Treibhausgasemissionen der Verbandsgemeinde, welche sowohl für den IST-Zustand als auch für das Basisjahr 1990 errechnet wurden.

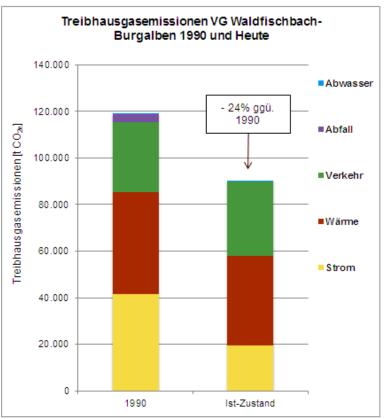


Abb. 6-4: Treibhausgasemissionen der Verbandsgemeinde Waldfischbach-Burgalben (1990 und IST-Zustand)

Im Referenzjahr 1990 wurden aufgrund des Energieverbrauches¹⁷⁶ der Verbandsgemeinde ca. 119.000°t CO₂-e emittiert. Für den ermittelten IST-Zustand wurden jährlich Emissionen von etwa 90.000 t/CO₂-e kalkuliert. Gegenüber dem Basisjahr 1990 konnten somit bereits ca. 24% der Emissionen eingespart werden.

© IfaS 2013 87

.

¹⁷⁶ Im Rahmen der retrospektiven Bilanzierung für das Basisjahr 1990 konnte auf keine Primärdatensätze zurückgegriffen werden. Der Stromverbrauch wurde anhand des Gesamtstromverbrauches von Rheinland-Pfalz (Vgl. Statistisches Landesamt Rheinland-Pfalz 2012: S. 18) über Einwohneräquivalente und Pro-Kopf-Verbrauchsentwicklungen von Rheinland-Pfalz auf 1990 rückgerechnet. Der Wärmeverbrauch der Privaten Haushalte konnte auf statistischer Grundlage zur Verteilung der Feuerungsanlagen und Wohngebäude (Zensus 1987) auf das Basisjahr zurückgerechnet werden. Die Rückrechnung für den Sektor Industrie & GHD erfolgte über die Erwerbstätigen am Arbeitsort (Vgl. AK ETR 2010). Dabei wurde von heutigen Verbrauchsdaten ausgegangen. Die Emissionen im Sektor Verkehr konnten durch die Zulassungen und Verbrauchswerte des Fahrzeugbestandes im Jahr 1990 berechnet werden. Verbrauchsdaten im Abfall- und Abwasserbereich wurden auf Grundlage der Landesstatistiken (Vgl. Ministerium für Umwelt, Forsten und Verbraucherschutz o.J.: S. 13 ff. und Statistisches Landesamt Rheinland-Pfalz 2012: S.4) in diesem Bereich auf 1990 rückgerechnet.

Große Einsparungen entstanden vor allem im Strombereich, welche sowohl auf den Ausbau der Windkraft-, Photovoltaik- und Wasserkraftanlagen als auch auf eine bundesweite Verbesserung des anzusetzenden Emissionsfaktors im Stromsektor zurückzuführen sind. 177 Im Stromsektor kann demnach von einer Reduktionsentwicklung von ca. 52% ausgegangen werden.

Insgesamt stellt der Wärmebereich derzeit mit ca. 42% den größten Verursacher der Treibhausgasemissionen dar und bietet den größten Ansatzpunkt für Einsparungen, welche im weiteren Verlauf des Klimaschutzkonzeptes (insbesondere im Maßnahmenkatalog) erläutert werden.

6.2 Energieeffizienz

In der Verbandsgemeinde Waldfischbach-Burgalben befinden sich zum Jahr 2010 insgesamt 4.523 Wohngebäude mit einer Wohnfläche von ca. 680.000 m². Die Gebäudestruktur teilt sich in 70% Einfamilienhäuser, 26% Zweifamilienhäuser und 4% Mehrfamilienhäuser.

Die folgende Tabelle gibt einen Überblick des Wohngebäudebestandes der VG (nach Baualtersklassen unterteilt).

Tab. 6-3: Wohngebäudebestand der VG Waldfischbach-Burgalben nach Baualtersklassen 179

Altersklasse	Prozentualer Anteil	Wohngebäude nach Altersklassen	Davon Ein- und Zweifamilienhäuser	Davon Mehrfamilienhäuser
bis 1918	15,21%	688	659	29
1919 - 1948	12,78%	578	553	25
1949 - 1978	42,63%	1.928	1.846	82
1979 - 1990	14,80%	669	641	29
1991 - 2000	10,72%	485	464	21
2001 - Heute	3,86%	175	167	7
Gesamt	100%	4.523	4.330	193

Insgesamt existieren in der Verbandsgemeinde 4.102 Primärheizer und 1.628 Sekundärheizer (z. B. Holzeinzelöfen). Die Verteilung der Heizenergieanlagen ist in nachfolgender Tabelle dargestellt.

© IfaS 2013 88

4

Für das Jahr 1990 wurde ein CO₂-e-Faktor von 683 g/kWh exklusive der Vorketten berechnet. Berechnungsgrundlage ist an dieser Stelle Gemis 4.7 in Anlehnung an die Kraftwerksstruktur zur Stromerzeugung im Jahr 1990 (Vgl. BMU 2010)
 Vgl. Statistisches Landesamt Rheinland-Pfalz, 2010

Vgl. Destatis, schriftliche Mitteilung von Frau Leib-Manz (Bereich Bautätigkeiten), Verteilung innerhalb der Baualtersklassen – Tabelle zur Aufteilung des Deutschen Wohngebäudebestandes nach Bundesländern und Baualtersklassen, am 15.09.2010.

Tab. 6-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträger

Energieträger	Primärheizer	Sekundärheizer			
Öl	3.467	550			
Gas	594	3			
Strom	41	155			
Kohle, Holz		920			
Summe	4.102	1.628			
Gesamt	5.730				

Außerdem gibt es in der VG noch 64 Wärmepumpen und durch das Marktanreizprogramm geförderte Biomasseanlagen mit insgesamt 4.778 kW installierter Leistung.

Es ergibt sich ein gesamter Heizwärmeverbrauch der privaten Wohngebäude innerhalb der Verbandsgemeinde von derzeit 134 GWh/a.

Insbesondere bei veralteten Heizungsanlagen ist ein hohes Einsparpotenzial vorhanden. Folgende Tabelle stellt die Anzahl der Anlagen für Öl- und Gasheizungen nach Baualtersklassen dar:

Tab. 6-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen

	Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen							
	bis 1978	1979-1982	1983-1988	1988-1997	1998-2008	ab 2009		
ÖI	222	164	500	1.498	1.055	29		
Gas	10	18	72	303	184	6		

Eigene Liegenschaften:

Aufgrund eines Heizwärmeverbrauchs der auswertbaren 17 eigenen Gebäude in der Verbandsgemeinde (siehe Tab. 6-6) von 1.400 MWh im Jahr 2011 (bei 12.200 m² Nutzfläche), wurden für die einzelnen Gebäude der spezifische Heizwärmeverbrauch in kWh/(m²*a) ermittelt und in folgender Abbildung dargestellt.

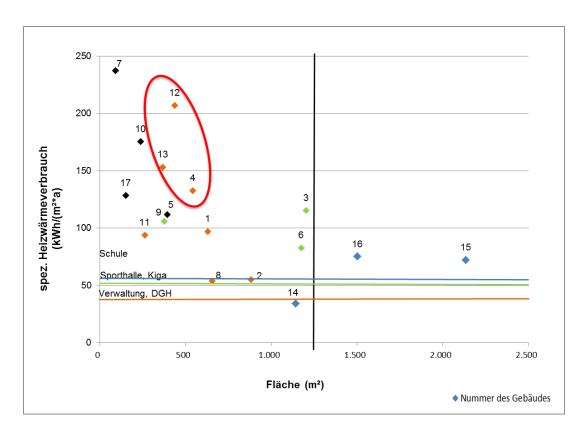


Abb. 6-5: VG Waldfischbach-Burgalben – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche

Tab. 6-6: Übersicht Öffentliche Liegenschaften

Nr.	Öffentliche Liegenschaften
1	ehem. Schule Geiselberg
2	Bürgerhaus Geiselberg
3	Festhalle Heltersberg
4	Rathaus Heltersberg
5	Wohngebäude Heltersberg
6	Kindergarten Heltersberg
7	Wohngebäude Heltersberg
8	Dorfgemeinschaftshaus Horbach
9	Kindergarten Horbach
10	Wohngebäude Schmalenberg
11	Rathaus / Wohnungen Schmalenberg
12	Rathaus (+Notar) Waldfischbach-Burgalben
13	Jugendtreff / Wohnung Waldfischbach-Burgalben
14	Grundschule Höheinöd
15	Grundschule Waldfischbach
16	Grundschule Burgalben
17	Wasserhaus Hermersberg

Tab. 6-7: Gebäude mit hohen Wärmeverbräuchen

Nr.	Gebäude	BGF (m²)	Verbrauch (kWh/a)
4	Rathaus Heltersberg	542	91.882
12	Rathaus (+Notar) Waldfischbach-Burgalben	437	115.531
13	Jugendtreff / Wohnung Waldfischbach-Burgalben	367	71.748

Die Gesamtleistung der 33 Heizungsanlagen beträgt 3.078 kW und verteilt sich auf die einzelnen Energieträger wie in folgender Tabelle dargestellt:

Tab. 6-8: Leistung der Heizungsanlagen nach Energieträger

Energieträger	Anzahl	Leistung (kW)
Öl	11	1.082
Gas	19	1.955
Pellets	1	
Flüssiggas	2	42
Summe	33	3.078

6.3 Erneuerbarer Energien

6.3.1 Photovoltaikpotenzial auf Freiflächen

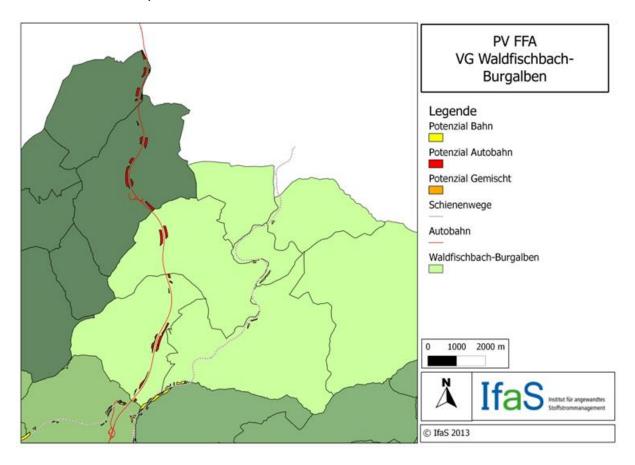
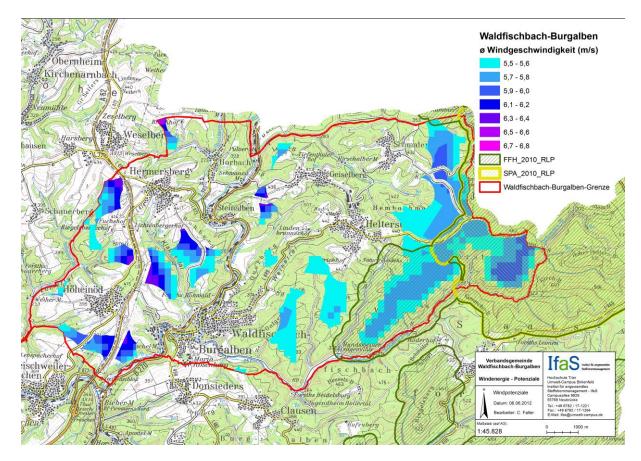


Abb. 6-6: Photovoltaikpotenzial auf Freiflächen VG Waldfischbach-Burgalben

Tab. 6-9: Photovoltaikpotenzial auf Freiflächen VG Waldfischbach-Burgalben

Ausbaupotenziale PV-FFA						
Anzahl Fläche Install, Leistung ¹ Stromerträge ²						
Standorttyp	(Stück)	(m²)	(kWp)	(MWh/a)		
Schienenwege	11	87.000	3.500	3.200		
Autobahn	14	182.000	7.300	6.600		
Gesamt	25	269.000	10.800	9.800		
1: 25 m²/kWP	2: 900 kWh*a/kWP					

6.3.2 Solarenergiepotenziale auf Dachflächen


Tab. 6-10: Solarenergiepotenzial auf Dachflächen VG Waldfischbach-Burgalben

Ausbaupotenziale Solarenergie auf Dachflächen						
Photov		Solarthermie				
Installierbare Leistung ¹ (kWp)	Stromerträge (MWh/a)	Kollektorfläche ² (m²)	Wärmeerträge ³ (MWh/a)	Heizöläquivalente ⁴ (I)		
32.000	27.500	59.000	22.000	2.743.000		
1) 7 m² pro kWp Dickschicht/12	,5 m² pro kWp Dünnschicht	5) Techn. Potenzial - Bestand = Ausbaupotenzial				
2) 14 m² Solarthermie pro Dachfläche		Bestand ST: Angaben der BAFA zu geförderten Anlagen				
3) Ertrag von 350 kWh/m² Solar	thermie	Bestand PV: Angaben aus EEG Anlagenregister 2011				
4) Verdrängung Ölheizung		Werte auf volle hundert gerundet				

6.3.3 Windenergiepotenzial

Tab. 6-11: Windenergiepotenzial VG Waldfischbach-Burgalben

Ausbaupotenziale Windenergie					
Potenzialfläche (ha)	Anteil (%)	mögliche WEA	Install. Leistung (MW)	Stromerträge (GWh/a)	
1.681	14	117	269,1	565	

In Waldfischbach-Burgalben sind mehrere kritische Gebiete zu sehen. Diese kritischen Bereiche befinden sich jedoch aus-

schließlich außerhalb von Ortsgemeinden. Ansonsten befindet sich die VG nur auf

Gebieten, die mit zusätzlichen Auflagen

meist genehmigungsfähig sind.

Abb. 6-7: Windenergiepotenzial VG Waldfischbach-Burgalben

6.3.4 Geothermiepotenzial

6.3.5 Biomassepotenzial

Abb. 6-8: Geothermiepotenzial VG Waldfischbach-Burgalben

Tab. 6-12: Biomassepotenzial VG Waldfischbach-Burgalben

Ausbaupotenziale Biomasse								
Festbrennstoffe Fortst	Festbrennstoffe aus Ackerflächen	Festbrennstoffe aus Grünschnitt und Landschaftspfle	Biogassubstrate	Biogassubstrate aus Ackerflächen	Biogassubstrate aus Dauergrünland	Biogassubstrate organische Abfälle	Gesamt	
[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	
16.256	Stoh in Nutzung	1.278	1.178	0	2.086	904	21.702	

6.3.6 Wasserkraftpotenzial

Tab. 6-13: Wasserkraftpotenzial VG Waldfischbach-Burgalben

Ausbaupotenziale Wasserkraft							
Gewässer	Name der Anlage	installierte Leistung	Arbeits- vermögen	Volllast- stunden	Bundes- durchschnitt		
		[kW]	[kWh/a]	[h]	[h]		
Moosalbe	Jakobsmühle	8	18.503	2.467	3.500		

7 Verbandsgemeinde Wallhalben

Energie- und Treibhausgasbilanzierung (Startbilanz)

Um Klimaschutzziele innerhalb eines Betrachtungsraumes quantifizieren zu können, ist es unerlässlich, die Energieversorgung, den Energieverbrauch sowie die unterschiedlichen Energieträger zu bestimmen. Die Analyse bedarf der Berücksichtigung einer fundierten Datengrundlage und muss sich darüber hinaus statistischer Berechnungen 180 bedienen, da keine vollständige Erfassung der Verbrauchs- und Produktionsdaten für die Verbandsgemeinde Wallhalben vorliegt.

Die Betrachtung der Energiemengen bezieht sich im Rahmen des Konzeptes auf die Form der Endenergie (z. B. Heizöl, Holzpellets, Strom). Die verwendeten Emissionsfaktoren beziehen sich auf die relevanten Treibhausgase CO₂, CH₄ sowie N₂O und werden als CO₂-Äquivalente¹⁸¹ (CO₂e) ausgewiesen. Die Faktoren stammen aus dem Globalen Emissions-Modell integrierter Systeme (GEMIS) in der Version 4.7¹⁸² und sind als Anhang (Erläuterung zu den Wirkungsanalysen) zur Einsicht hinterlegt. Sie beziehen sich ebenfalls auf den Endenergieverbrauch und berücksichtigen keine Vorketten z. B. aus der Anlagenproduktion oder der Brennstoffbereitstellung. Das vorliegende Konzept bezieht sich im Wesentlichen systematisch auf das Gebiet der Verbandsgemeinde. Dementsprechend ist die Energie- und Treibhausgasbilanzierung nach der Methodik einer "endenergiebasierten Territorialbilanz" aufgebaut, welche im Praxisleitfaden "Klimaschutz in Kommunen" für die Erstellung von Klimaschutzkonzepten nahegelegt wird. 183 Die Betrachtung der Energiemengen bezieht sich vor diesem Hintergrund auf die Form der Endenergie. 184

Im Folgenden werden die Gesamtenergieverbräuche sowie die derzeitigen Energieversorgungsstrukturen der Verbandsgemeinde Wallhalben im IST-Zustand analysiert.

7.1.1 Analyse des Gesamtenergieverbrauches und der Energieversorgung

Mit dem Ziel, den Energieverbrauch und die damit einhergehenden Treibhausgasemissionen der Verbandsgemeinde im IST-Zustand abzubilden, werden an dieser Stelle die Bereiche

¹⁸⁰ Im Klimaschutzkonzept erfolgen insbesondere die Berechnungen für das ausgewählte Basisjahr 1990 anhand statistischer Daten.

181 N₂O und CH₄ wurden in CO₂-Äquivalente umgerechnet (Vgl. IPCC 2007: S. 36)

¹⁸² Vgl. Fritsche und Rausch 2011

¹⁸³ Vgl. Difu 2011; Der Klimaschutzleitfaden spricht Empfehlungen zur Bilanzierungsmethodik im Rahmen von Klimaschutzkonzepten aus. Das IfaS schließt sich im vorliegenden Fall dieser Methodik an, da die Empfehlungen des Praxisleitfadens unter anderem durch das Umweltbundesamt (UBA) sowie das Forschungszentrum Jülich GmbH (PTJ) fachlich unterstützt wurden.

184 Des Weiteren ermäglicht die Betreit

Des Weiteren ermöglicht die Betrachtung der Endenergie eine höhere Transparenz auch für fachfremde Betroffene und Interessierte, da ein Bezug eher zur Endenergie besteht und keine Rückrechnung von Endenergie zur Primärenergie nachvollzogen werden muss.

Strom, Wärme, Verkehr sowie Abfall und Abwasser hinsichtlich ihrer Verbrauchs- und Versorgungsstrukturen analysiert. 185

7.1.1.1 Gesamtstromverbrauch und Stromerzeugung

Zur Ermittlung des Stromverbrauches des Betrachtungsgebietes wurden die zur Verfügung gestellten Daten des zuständigen Netzbetreibers¹⁸⁶ über die gelieferten und durchgeleiteten Strommengen an private, kommunale sowie gewerbliche und industrielle Abnehmer herangezogen.¹⁸⁷ Die vorliegenden Verbrauchsdaten gehen auf das Jahr 2011 zurück und weisen einen Gesamtstromverbrauch von rund 22.000 MWh/a für die Verbandsgemeinde aus.

Mit einem jährlichen Verbrauch von rund 15.300 MWh weist die Verbrauchergruppe Private Haushalte den höchsten Stromverbrauch der Verbandsgemeinde auf. Im Bereich Industrie, Gewerbe Handel und Dienstleistungen werden jährlich ca. 5.600 MWh benötigt. Gemessen am Gesamtstromverbrauch stellen die kommunalen Liegenschaften¹⁸⁸ mit einer jährlichen Verbrauchsmenge von rund 890 MWh erwartungsgemäß die kleinste Verbrauchsgruppe des Betrachtungsgebietes dar (siehe dazu Abb. 7-3)¹⁸⁹

Heute werden bilanziell betrachtet ca. 99% des Gesamtstromverbrauches der Verbandsgemeinde aus erneuerbarer Stromproduktion gedeckt. Damit liegt der Anteil Erneuerbarer Energien an der Stromproduktion deutlich über dem Bundesdurchschnitt von 20,3% im Jahr 2011.¹⁹⁰ Die lokale Stromproduktion speist sich vor allem aus der Nutzung von Windkraft-, Photovoltaik- und Biogasanlagen. Die folgende Abbildung zeigt den derzeitigen Beitrag der Erneuerbaren Energien im Verhältnis zum Gesamtstromverbrauch auf:

¹⁸⁵ Detailangaben zu den Berechnungsparametern sind der Erläuterung zu den Wirkungsanalysen im Anhang zu entnehmen.

In diesem Fall ist der zuständige Netzbetreiber für den Landkreis Südwestpfalz: Für die A-Gemeinden die gemeindeeigenen Elektrizitätswerke; für alle anderen die Pfalzwerke AG.

Die Daten wurden in folgender Aufteilung übermittelt: Straßenbeleuchtung, Speicherheizung, Gewerbe, öffentliche Liegenschaften und Private Haushalte.

¹⁸⁸ Auf Verbandsgemeindeebene werden nur die kommunalen Liegenschaften betrachtet (ohne die Kreiseigenen).

Die angegebenen Verbrauchswerte innerhalb der Sektoren wurden mit Excel von kWh auf MWh abgerundet, aus diesem Grund kann es zu rundungsbedingten Abweichungen in Bezug auf die Gesamtverbrauchsmenge kommen. ¹⁹⁰ Vgl. BMU 2012: S. 12

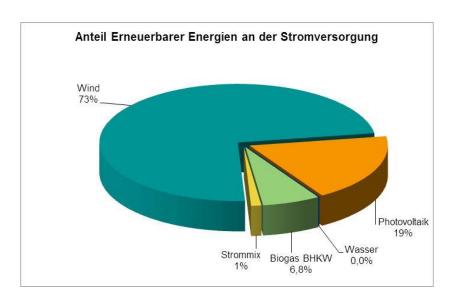


Abb. 7-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Wallhalben

7.1.1.2 Gesamtwärmeverbrauch und Wärmeerzeugung

Die Ermittlung des Gesamtwärmebedarfes auf dem Gebiet der Verbandsgemeinde stellt sich im Vergleich zur Stromverbrauchsanalyse deutlich schwieriger dar. Neben konkreten Verbrauchszahlen für leitungsgebundene Wärmeenergie (Erdgas) kann in der Gesamtbetrachtung aufgrund einer komplexen und zum Teil nicht leitungsgebundenen Versorgungsstruktur lediglich eine Annäherung an tatsächliche Verbrauchswerte erfolgen. Zur Ermittlung des Wärmebedarfes auf Basis leitungsgebundener Energieträger wurden Verbrauchsdaten über die Erdgasliefermengen im Verbrauchsgebiet der Verbandsgemeinde für das Jahr 2011 des Netzbetreibers¹⁹¹ herangezogen. Ferner wurden für die Ermittlung des Wärmebedarfes im privaten Wohngebäudebestand die Daten des Zensus 87¹⁹² und der Baufertigstellungsstatistik 1990 bis 2010¹⁹³ betrachtet und ausgewertet (vgl. dazu Kapitel 7.2).

Des Weiteren wurden die durch das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) gelieferten Daten über geförderte innovative Erneuerbare-Energien-Anlagen (Solarthermie-Anlagen¹⁹⁴, mechanisch beschickte Bioenergieanlagen¹⁹⁵, Wärmepumpen¹⁹⁶, KWK-Anlagen¹⁹⁷) bis zum Jahr 2012 herangezogen.

Insgesamt konnte für die Verbandsgemeinde ein jährlicher Gesamtwärmeverbrauch von rund 84.000 MWh ermittelt werden. 198

© IfaS 2013 98

-

¹⁹¹ In diesem Fall ist der zuständige Netzbetreiber für den gesamten Landkreis: Die Pfalzgas GmbH

¹⁹² Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: a

¹⁹³ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: b und c

¹⁹⁴ Vgl. Webseite Solaratlas

¹⁹⁵ Vgl. Webseite Biomasseatlas

¹⁹⁶ Vgl. Statistisches Landesamt Rheinland-Pfalz o.J. c

¹⁹⁷ Vgl. Datenübermittlung Alfred Smuck (BAFA) vom 13.11.2012

¹⁹⁸ Der Gesamtwärmeverbrauch setzt sich aus folgenden Punkten zusammen: Angaben zu gelieferten Gasmengen der Netzbetreiber, Hochrechnung des Wärmeverbrauches im privaten Wohngebäudesektor, Angaben der Verwaltung zu kommunalen Liegenschaften sowie statistischen Angaben über den Ölverbrauch der Industrie im Betrachtungsgebiet.

Mit einem jährlichen Anteil von ca. 98% des Gesamtwärmeverbrauches (ca. 82.000°MWh/a) stellen die Privaten Haushalte mit Abstand den größten Wärmeverbraucher der Verbandsgemeinde dar. An zweiter Stelle steht die Verbrauchergruppe Industrie, Gewerbe Handel und Dienstleistungen mit einem Anteil von ca. 2% (ca. 1.600°MWh/a).

Derzeit können etwa 9% des Gesamtwärmeverbrauches über erneuerbare Energieträger abgedeckt werden. Damit liegt der Anteil Erneuerbarer Energien an der Wärmebereitstellung unter dem Bundesdurchschnitt, der im Jahr 2011 bei 11% lag. 199 In der Verbandsgemeinde Wallhalben beinhaltet die Wärmeproduktion aus Erneuerbaren Energieträgern vor allem die Verwendung von Biomasse-Festbrennstoffen, solarthermischen Anlagen und Wärmepumpen. Die folgende Darstellung verdeutlicht, dass die Wärmeversorgung im IST-Zustand überwiegend auf fossilen Energieträgern basiert.

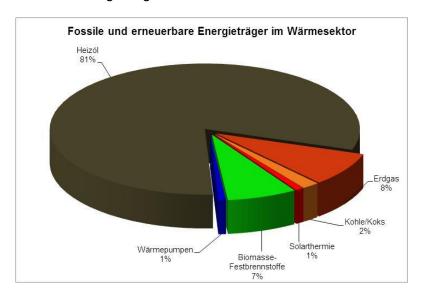


Abb. 7-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Wallhalben

7.1.1.3 Energieverbrauch im Sektor Verkehr

Im Vergleich zum Energieverbrauch und dem Ausstoß der THG-Emissionen von 1990 sind diese in 2012 nur um 6% gestiegen obwohl sich der Fahrzeugbestand im gleichen Zeitraum um 20% erhöht hat. Der geringe Anstieg des Energieverbrauchs und der THG-Emissionen ist auf Effizienzgewinne zurückzuführen. Bereits 2020 wird eine Reduktion um 5% (Energie) sowie 34% (Emissionen) durch effizientere Technologien, biogene Kraftstoffe und die Zielvorgabe der Bundesregierung von "1 Millionen Elektrofahrzeuge bis 2020 auf Deutschlands Straßen" erfolgen.

Dieser Trend wird sich in den Folgejahren fortsetzen, sodass der Endenergieverbrauch bis zum Jahr 2050 auf jährlich rund 27.845 MWh/a fällt sowie die THG-Emissionen auf 0 t/a

¹⁹⁹ Vgl. BMU 2012: S. 14

CO₂. Dies entspricht einer Reduktion von insgesamt ca. 59% (Energie) und 100% (Emissionen) gegenüber dem Basisjahr 1990.

Tab. 7-1: Energiebilanz der VG Wallhalben

Gesamt	1990	2012	2020	2030	2040	2050
Gesaint	MWh	MWh	MWh	MWh	MWh	MWh
Fossile Kraftstoffe	67.759,56	71.379,08	60.303,61	46.658,78	21.542,08	0,00
- Diesel	42.185,61	43.925,26	33.983,85	27.411,28	12.868,47	0,00
- Ottokraftstoff	25.573,95	24.732,27	24.076,10	17.549,01	8.209,56	0,00
- Erdgas	0,00	13,67	856,36	627,03	340,24	0,00
- Flüssiggas	0,00	2.707,88	1.387,30	1.071,47	123,81	0,00
Erneuerbare Kraftstoffe	0,00	0,00	4.118,09	9.414,19	19.337,39	27.845,24
- Bio-/Windgas	0,00	0,00	2.255,64	3.595,18	5.604,24	5.044,55
- Strom	0,00	0,00	1.862,45	5.819,01	13.733,15	22.800,69
Gesamt	67.759,56	71.379,08	64.421,69	56.072,97	40.879,47	27.845,24
Differenz zu 1990		3.619,52	-3.337,87	-11.686,59	-26.880,09	-39.914,32
Veränderung in Prozent		5%	-5%	-17%	-40%	-59%

Tab. 7-2: Emissionsbilanz der VG Wallhalben

Gesamt	1990	2012	2020	2030	2040	2050
Gesam	t/a CO2	t/a CO2				
Fossile Kraftstoffe	17.985,17	18.908,74	11.809,90	8.582,21	3.791,79	0,00
- Diesel	11.887,06	12.377,26	6.245,00	4.626,55	2.166,53	0,00
- Ottokraftstoff	6.098,11	5.895,07	5.031,84	3.568,02	1.525,48	0,00
- Erdgas	0,00	2,76	185,15	130,76	67,35	0,00
- Flüssiggas	0,00	633,64	347,91	256,88	32,43	0,00
Erneuerbare Kraftstoffe	0,00	0,00	0,00	0,00	0,00	0,00
- Bio-/Windgas	0,00	0,00	0,00	0,00	0,00	0,00
- Strom	0,00	0,00	0,00	0,00	0,00	0,00
Gesamt	17.985,17	18.908,74	11.809,90	8.582,21	3.791,79	0,00
Differenz zu 1990		923,57	-6.175,27	-9.402,96	-14.193,38	-17.985,17
Veränderung in Prozent		5%	-34%	-52%	-79%	-100%

7.1.1.4 Energieverbrauch im Sektor Abfall / Abwasser

Die Emissionen und Energieverbräuche des Sektors Abfall und Abwasser sind im Kontext des vorliegenden integrierten Klimaschutzkonzeptes sowie der dazugehörigen Treibhausgasbilanz als sekundär zu bewerten und werden aus diesem Grund größtenteils statistisch abgeleitet. Auf den Bereich Abfall und Abwasser ist weniger als 1% der Gesamtemissionen zurückzuführen.²⁰⁰

Der Energieverbrauch im Bereich der Abfallwirtschaft lässt sich zum einen auf die Behandlung der anfallenden Abfallmengen und zum anderen auf den Abfalltransport zurückführen. Abgeleitet aus den verschiedenen Abfallfraktionen im Entsorgungsgebiet fielen in der Verbandgemeinde Wallhalben²⁰¹ im Jahr 2011 insgesamt rund 3.000 t Abfall an.

Die durch die Abfallbehandlung entstehenden THG-Emissionen im stationären- sowie im Transportbereich, finden sich im Rahmen der Energie- und Treibhausgasbilanz im Sektor Strom, Wärme und Verkehr wieder. Das deutschlandweite Verbot einer direkten Müllde-

²⁰⁰ Bezogen auf die nicht-energetischen Emissionen. Die Emissionen aus dem stationären Energieverbrauch und dem Verkehr sind bereits in den entsprechenden Kapiteln enthalten und werden nicht separat für den Abfall- und Abwasserbereich darge-

ponierung seit 2005 und die gesteigerte Kreislaufwirtschaft führten dazu, dass die Emissionen, die dem Abfallsektor zuzurechnen waren, stark gesunken sind. Die Abfallentsorgung in Müllverbrennungsanlagen erfolgt vollständig unter energetischer Nutzung, sodass derzeit lediglich die Emissionen der Bio- und Grünabfälle mit einem Faktor von 17 kg CO₂e/t Abfall²⁰² berechnet werden. Für das Betrachtungsgebiet konnte in dieser Fraktion eine Menge von 409 t/a ermittelt werden. Demnach werden jährlich ca. 7 t CO₂-e verursacht.

Die Energieverbräuche zur Abwasserbehandlung sind ebenfalls im stationären Bereich der Bilanz eingegliedert (Strom und Wärme) und fließen auch in diesen Sektoren in die Treibhausgasbilanz ein. Zusätzliche Emissionen entstehen aus der Abwasserreinigung (N₂O durch Denitrifikation) und der anschließenden Weiterbehandlung des Klärschlamms (stoffliche Verwertung). Gemäß den Einwohnerwerten (Berechnung der N₂O-Emissionen) für das Betrachtungsjahr 2011 sowie Angaben des Statistischen Landesamtes Rheinland-Pfalz zur öffentlichen Klärschlammentsorgung²⁰³ wurden für den IST-Zustand der Abwasserbehandlung Emissionen in Höhe von ca. 141 t CO₂-e ermittelt.

7.1.1.5 Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern

Der Gesamtenergieverbrauch bildet sich als Summe der zuvor beschriebenen Teilbereiche und beträgt im abgeleiteten "IST-Zustand"²⁰⁴ ca. 167.000 MWh/a. Der Anteil der Erneuerbaren Energien am stationären Verbrauch²⁰⁵ (exklusive Verkehr) liegt in der Verbandsgemeinde durchschnittlich bei 27%. Die nachfolgende Grafik zeigt einen Gesamtüberblick über die derzeitigen Energieverbräuche auf, unterteilt nach Energieträgern und Sektoren:

²⁰² Vgl. Difu 2011: S. 266

Vgl. Statistisches Landesamt Rheinland-Pfalz 2012

An dieser Stelle ist zu erwähnen, dass sich die Datenquellen der verschiedenen Bausteine zur Errechnung des Gesamtenergieverbrauches auf unterschiedliche Bezugsjahre beziehen. Da kein einheitliches Bezugsjahr über alle Datenquellen hinweg angesetzt werden konnte, hat der Konzeptersteller jeweils den aktuellsten Datensatz verwandt. In den betroffenen Verbrauchsbereichen wurde davon ausgegangen, dass sich die Verbrauchsmengen in den letzten Jahren nicht signifikant verändert haben.

²⁰⁵ Hier wird der Vergleich mit dem stationären Energieverbrauch herangezogen, da im IST-Zustand mit der gegebenen Statistik keine erneuerbaren Energieträger als Treibstoff zu ermitteln waren.

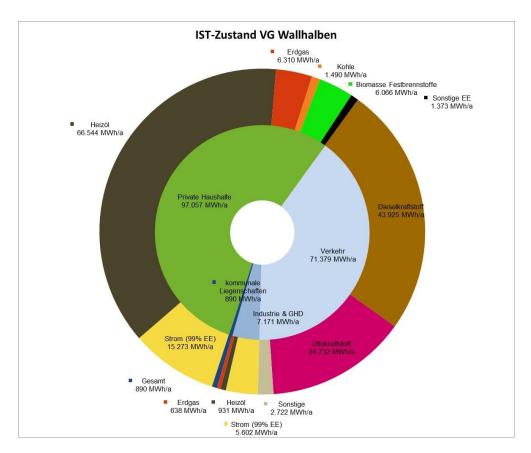


Abb. 7-3: Gesamtenergieverbrauch der Verbandsgemeinde Wallhalben im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren

Die zusammengefügte Darstellung der Energieverbräuche nach Verbrauchergruppen lässt erste Rückschlüsse über die dringlichsten Handlungssektoren des Klimaschutzkonzeptes zu. Das derzeitige Versorgungssystem ist augenscheinlich durch den Einsatz fossiler Energieträger geprägt. Für die regenerativen Energieträger ergibt sich demnach ein großer Ausbaubedarf. Des Weiteren lässt sich ableiten, dass die kommunalen Liegenschaften und Einrichtungen des Betrachtungsgebietes aus energetischer Sicht nur in geringem Maße zur Bilanzoptimierung beitragen können. Dennoch wird die Optimierung dieses Bereiches – insbesondere in Hinblick auf die Vorbildfunktion der Verbandsgemeinde gegenüber den weiteren Verbrauchergruppen – als besonders notwendig erachtet.

Den größten Energieverbrauch mit ca. 97.000.°MWh/a verursachen in der Verbandsgemeinde Wallhalben die Privaten Haushalte. Folglich entsteht hier auch der größte Handlungsbedarf, welcher sich vor allem im Einsparpotenzial der fossilen Wärmeversorgung widerspiegelt. Zweitgrößte Verbrauchergruppe ist der Verkehrssektor mit einem ermittelten Verbrauch von ca. 71.000°MWh/a. Im Hinblick auf die Verbrauchsgruppe Industrie und GHD entsteht ein Energieverbrauch von rund 7.000°MWh/a. Die Verbandsgemeinde kann auf diese Verbrauchssektoren einen indirekten Einfluss nehmen, um die Energiebilanz und die damit einhergehenden ökologischen und ökonomischen Effekte zu verbessern.

7.1.2 Treibhausgasemissionen der Verbandsgemeinde Wallhalben

Ziel der Treibhausgasbilanzierung auf kommunaler Ebene ist es, spezifische Referenzwerte für zukünftige Emissionsminderungsprogramme zu erheben. In der vorliegenden Bilanz werden auf Grundlage der zuvor erläuterten verbrauchten Energiemengen die territorialen Treibhausgasemissionen (CO₂e) in den Bereichen Strom, Wärme, Verkehr sowie Abfall und Abwasser quantifiziert. Die folgende Darstellung bietet einen Gesamtüberblick der relevanten Treibhausgasemissionen der Verbandsgemeinde, welche sowohl für den IST-Zustand als auch für das Basisjahr 1990 errechnet wurden.

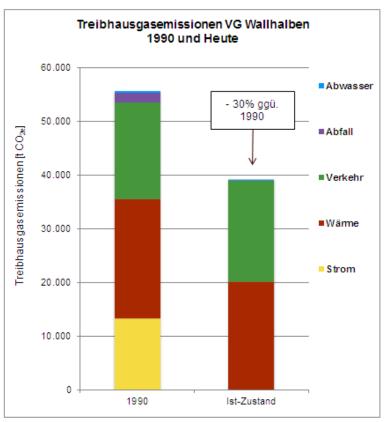


Abb. 7-4: Treibhausgasemissionen der Verbandsgemeinde Wallhalben (1990 und IST-Zustand)

Im Referenzjahr 1990 wurden aufgrund des Energieverbrauches²⁰⁶ der Verbandsgemeinde ca. 56.000°t CO₂-e emittiert. Für den ermittelten IST-Zustand wurden jährlich Emissionen von etwa 39.000 t/CO₂-e kalkuliert. Gegenüber dem Basisjahr 1990 konnten somit bereits ca. 30% der Emissionen eingespart werden.

© IfaS 2013 103

Im Rahmen der retrospektiven Bilanzierung für das Basisjahr 1990 konnte auf keine Primärdatensätze zurückgegriffen werden. Der Stromverbrauch wurde anhand des Gesamtstromverbrauches von Rheinland-Pfalz (Vgl. Statistisches Landesamt Rheinland-Pfalz 2012: S. 18) über Einwohneräquivalente und Pro-Kopf-Verbrauchsentwicklungen von Rheinland-Pfalz auf 1990 rückgerechnet. Der Wärmeverbrauch der Privaten Haushalte konnte auf statistischer Grundlage zur Verteilung der Feuerungsanlagen und Wohngebäude (Zensus 1987) auf das Basisjahr zurückgerechnet werden. Die Rückrechnung für den Sektor Industrie & GHD erfolgte über die Erwerbstätigen am Arbeitsort (Vgl. AK ETR 2010). Dabei wurde von heutigen Verbrauchsdaten ausgegangen. Die Emissionen im Sektor Verkehr konnten durch die Zulassungen und Verbrauchswerte des Fahrzeugbestandes im Jahr 1990 berechnet werden. Verbrauchsdaten im Abfall- und Abwasserbereich wurden auf Grundlage der Landesstatistiken (Vgl. Ministerium für Umwelt, Forsten und Verbraucherschutz o.J.: S. 13 ff. und Statistisches Landesamt Rheinland-Pfalz 2012: S.4) in diesem Bereich auf 1990 rückgerechnet.

Große Einsparungen entstanden vor allem im Strombereich, welche sowohl auf den Ausbau der Windkraft-, Photovoltaik- und Biogasanlagen als auch auf eine bundesweite Verbesserung des anzusetzenden Emissionsfaktors im Stromsektor zurückzuführen sind. Im Stromsektor kann demnach von einer Reduktionsentwicklung von ca. 99% ausgegangen werden. Damit ist im Strombereich bereits heute die "Null-Emission" so gut wie erreicht.

Insgesamt stellt der Wärmebereich derzeit mit ca. 51% den größten Verursacher der Treibhausgasemissionen dar und bietet den größten Ansatzpunkt für Einsparungen, welche im weiteren Verlauf des Klimaschutzkonzeptes (insbesondere im Maßnahmenkatalog) erläutert werden.

7.2 Energieeffizienz

In der Verbandsgemeinde Wallhalben befinden sich zum Jahr 2010 insgesamt 2.743 Wohngebäude mit einer Wohnfläche von ca. 415.000 m². Die Gebäudestruktur teilt sich in 76% Einfamilienhäuser, 22% Zweifamilienhäuser und 2% Mehrfamilienhäuser.

Die folgende Tabelle gibt einen Überblick des Wohngebäudebestandes der VG (nach Baualtersklassen unterteilt).

Tab. 7-3: Wohngebäudebestand der VG Wallhalben nach Baualtersklassen²⁰⁹

Altersklasse	Prozentualer Anteil	Wohngebäude nach Altersklassen	Davon Ein- und Zweifamilienhäuser	Davon Mehrfamilienhäuser
bis 1918	15,21%	417	409	9
1919 - 1948	12,78%	351	343	7
1949 - 1978	42,63%	1.169	1.145	24
1979 - 1990	14,80%	406	398	8
1991 - 2000	10,72%	294	288	6
2001 - Heute	3,86%	106	104	2
Gesamt	100%	2.743	2.686	57

Insgesamt existieren in der Verbandsgemeinde 2.036 Primärheizer und 1.089 Sekundärheizer (z. B. Holzeinzelöfen). Die Verteilung der Heizenergieanlagen ist in nachfolgender Tabelle dargestellt.

© IfaS 2013 104

_

Für das Jahr 1990 wurde ein CO₂-e-Faktor von 683 g/kWh exklusive der Vorketten berechnet. Berechnungsgrundlage ist an dieser Stelle Gemis 4.7 in Anlehnung an die Kraftwerksstruktur zur Stromerzeugung im Jahr 1990 (Vgl. BMU 2010)
 Vgl. Statistisches Landesamt Rheinland-Pfalz, 2010

Vgl. Destatis, schriftliche Mitteilung von Frau Leib-Manz (Bereich Bautätigkeiten), Verteilung innerhalb der Baualtersklassen – Tabelle zur Aufteilung des Deutschen Wohngebäudebestandes nach Bundesländern und Baualtersklassen, am 15.09.2010.

Tab. 7-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträger

Energieträger	Primärheizer	Sekundärheizer
Öl	1.823	309
Gas	175	8
Strom	38	113
Kohle, Holz		659
Summe	2.036	1.089
Gesamt	3.1	25

Außerdem gibt es in der VG noch 37 Wärmepumpen und durch das Marktanreizprogramm geförderte Biomasseanlagen mit insgesamt 2.333 kW installierter Leistung.

Es ergibt sich ein gesamter Heizwärmeverbrauch der privaten Wohngebäude innerhalb der Verbandsgemeinde von derzeit 82 GWh/a.

Insbesondere bei veralteten Heizungsanlagen ist ein hohes Einsparpotenzial vorhanden. Folgende Tabelle stellt die Anzahl der Anlagen für Öl- und Gasheizungen nach Baualtersklassen dar:

Tab. 7-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen

Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen								
	bis 1978	1979-1982	1983-1988	1988-1997	1998-2008	ab 2009		
ÖI	117	86	263	787	555	15		
Gas	3	5	21	89	54	2		

7.3 Erneuerbarer Energien

7.3.1 Photovoltaikpotenzial auf Freiflächen

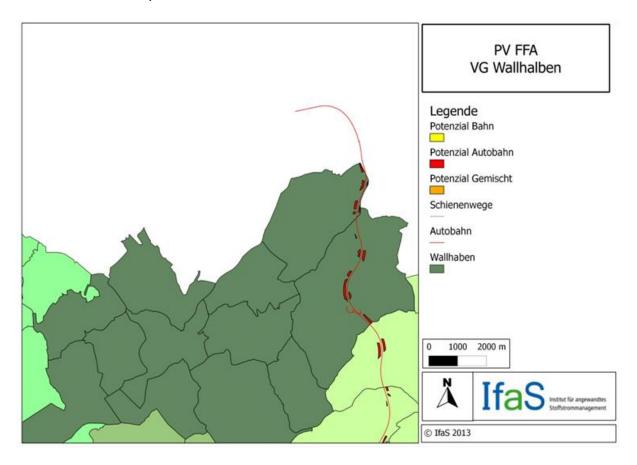


Abb. 7-5: Photovoltaikpotenzial auf Freiflächen VG Wallhalben

Tab. 7-6: Photovoltaikpotenzial auf Freiflächen VG Wallhalben

Ausbaupotenziale PV-FFA							
Standorttyp	Anzahl	Fläche	Install. Leistung ¹	Stromerträge ²			
	(Stück)	(m²)	(kWp)	(MWh/a)			
Schienenwege	13	195.000	7.800	7.000			

7.3.2 Solarenergiepotenzial auf Dachflächen

Tab. 7-7: Solarenergie auf Dachflächen VG Wallhalben

Ausbaupotenziale Solarenergie auf Dachflächen							
Photov	voltaik	Solarthermie					
Installierbare Leistung ¹ (kWp)	Stromerträge (MWh/a)	Kollektorfläche ² (m²)	Wärmeerträge ³ (MWh/a)	Heizöläquivalente ⁴ (I)			
24.000	20.400	51.000	19.000	2.375.000			
1) 7 m² pro kWp Dickschicht/12	,5 m² pro kWp Dünnschicht	5) Techn. Potenzial - Bestand = Ausbaupotenzial					
2) 14 m² Solarthermie pro Dach	Bestand ST: Angaben der BAFA zu geförderten Anlagen						
3) Ertrag von 350 kWh/m² Solari	Bestand PV: Angaben aus EEG Anlagenregister 2011						
4) Verdrängung Ölheizung		Werte auf volle hundert gerundet					

7.3.3 Windenergiepotenzial

Tab. 7-8: Windenergiepotenzial VG Wallhalben

Ausbaupotenziale Windenergie							
Potenzialfläche (ha)	Anteil (%)	mögliche WEA	Install. Leistung (MW)	Stromerträge (GWh/a)			
1.445	12	100	230,0	486			

© IfaS 2013 107

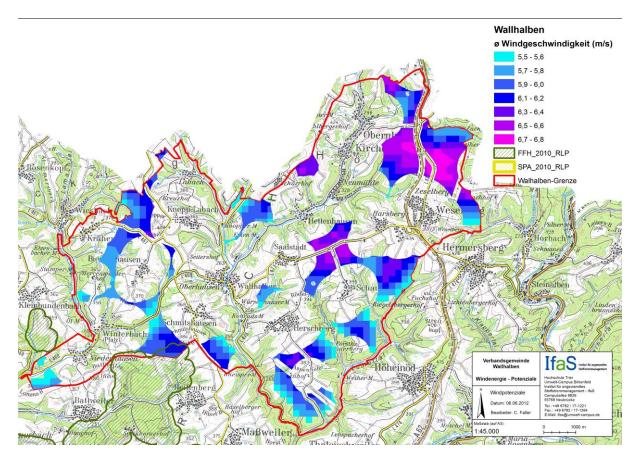


Abb. 7-6: Windenergiepotenzial VG Wallhalben

7.3.4 Geothermiepotenzial

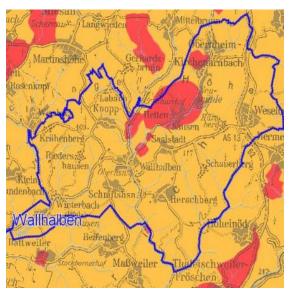


Abb. 7-7: Geothermiepotenzial VG Wallhalben

Auf der Karte ist ein kritischer Bereich in der Ortsgemeinde Hettenhausen zu erkennen. Der Rest der VG befindet sich auf Gebieten, die mit zusätzlichen Auflagen meist genehmigungsfähig sind.

7.3.5 Biomassepotenzial

Tab. 7-9: Biomassepotenzial VG Wallhalben

Ausbaupotenziale Biomasse							
Festbrennstoffe Fortst	Festbrennstoffe aus Ackerflächen	Festbrennstoffe aus Grünschnitt und Landschaftspfle	Biogassubstrate	Biogassubstrate aus Ackerflächen	Biogassubstrate aus Dauergrünland	Biogassubstrate organische Abfälle	Gesamt
[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]
6.202	10.039	460	6.490	7.048	0	527	30.766

7.3.6 Wasserkraftpotenzial

Entfällt

Verbandsgemeinde Zweibrücken-Land

Energie- und Treibhausgasbilanzierung (Startbilanz)

Um Klimaschutzziele innerhalb eines Betrachtungsraumes quantifizieren zu können, ist es unerlässlich, die Energieversorgung, den Energieverbrauch sowie die unterschiedlichen Energieträger zu bestimmen. Die Analyse bedarf der Berücksichtigung einer fundierten Datengrundlage und muss sich darüber hinaus statistischer Berechnungen²¹⁰ bedienen, da keine vollständige Erfassung der Verbrauchs- und Produktionsdaten für die Verbandsgemeinde Zweibrücken-Land vorliegt.

Die Betrachtung der Energiemengen bezieht sich im Rahmen des Konzeptes auf die Form der Endenergie (z. B. Heizöl, Holzpellets, Strom). Die verwendeten Emissionsfaktoren beziehen sich auf die relevanten Treibhausgase CO₂, CH₄ sowie N₂O und werden als CO₂-Äquivalente²¹¹ (CO₂e) ausgewiesen. Die Faktoren stammen aus dem Globalen Emissions-Modell integrierter Systeme (GEMIS) in der Version 4.7²¹² und sind als Anhang (Erläuterung zu den Wirkungsanalysen) zur Einsicht hinterlegt. Sie beziehen sich ebenfalls auf den Endenergieverbrauch und berücksichtigen keine Vorketten z. B. aus der Anlagenproduktion oder der Brennstoffbereitstellung. Das vorliegende Konzept bezieht sich im Wesentlichen systematisch auf das Gebiet der Verbandsgemeinde. Dementsprechend ist die Energie- und Treibhausgasbilanzierung nach der Methodik einer "endenergiebasierten Territorialbilanz" aufgebaut, welche im Praxisleitfaden "Klimaschutz in Kommunen" für die Erstellung von Klimaschutzkonzepten nahegelegt wird. 213 Die Betrachtung der Energiemengen bezieht sich vor diesem Hintergrund auf die Form der Endenergie.²¹⁴

Im Folgenden werden die Gesamtenergieverbräuche sowie die derzeitigen Energieversorgungsstrukturen der Verbandsgemeinde Zweibrücken-Land im IST-Zustand analysiert.

8.1.1 Analyse des Gesamtenergieverbrauches und der Energieversorgung

Mit dem Ziel, den Energieverbrauch und die damit einhergehenden Treibhausgasemissionen der Verbandsgemeinde im IST-Zustand abzubilden, werden an dieser Stelle die Bereiche

²¹⁰ Im Klimaschutzkonzept erfolgen insbesondere die Berechnungen für das ausgewählte Basisjahr 1990 anhand statistischer Daten.

211 N₂O und CH₄ wurden in CO₂-Äquivalente umgerechnet (Vgl. IPCC 2007: S. 36)

²¹² Vgl. Fritsche und Rausch 2011

²¹³ Vgl. Difu 2011; Der Klimaschutzleitfaden spricht Empfehlungen zur Bilanzierungsmethodik im Rahmen von Klimaschutzkonzepten aus. Das IfaS schließt sich im vorliegenden Fall dieser Methodik an, da die Empfehlungen des Praxisleitfadens unter anderem durch das Umweltbundesamt (UBA) sowie das Forschungszentrum Jülich GmbH (PTJ) fachlich unterstützt wurden.

Des Weiteren ermöglicht die Betrachtung der Endenergie eine höhere Transparenz auch für fachfremde Betroffene und Interessierte, da ein Bezug eher zur Endenergie besteht und keine Rückrechnung von Endenergie zur Primärenergie nachvollzogen werden muss.

Strom, Wärme, Verkehr sowie Abfall und Abwasser hinsichtlich ihrer Verbrauchs- und Versorgungsstrukturen analysiert.²¹⁵

8.1.1.1 Gesamtstromverbrauch und Stromerzeugung

Zur Ermittlung des Stromverbrauches des Betrachtungsgebietes wurden die zur Verfügung gestellten Daten des zuständigen Netzbetreibers²¹⁶ über die gelieferten und durchgeleiteten Strommengen an private, kommunale sowie gewerbliche und industrielle Abnehmer herangezogen.²¹⁷ Die vorliegenden Verbrauchsdaten gehen auf das Jahr 2011 zurück und weisen einen Gesamtstromverbrauch von rund 45.000 MWh/a für die Verbandsgemeinde aus.

Mit einem jährlichen Verbrauch von rund 31.500 MWh weist die Verbrauchergruppe Private Haushalte den höchsten Stromverbrauch der Verbandsgemeinde auf. Im Bereich Industrie, Gewerbe Handel und Dienstleistungen werden jährlich ca. 12.000 MWh benötigt. Gemessen am Gesamtstromverbrauch stellen die kommunalen Liegenschaften²¹⁸ mit einer jährlichen Verbrauchsmenge von rund 1.500 MWh erwartungsgemäß die kleinste Verbrauchsgruppe des Betrachtungsgebietes dar (siehe dazu Abb. 8-3)²¹⁹

Heute werden bilanziell betrachtet ca. 55% des Gesamtstromverbrauches der Verbandsgemeinde aus erneuerbarer Stromproduktion gedeckt. Damit liegt der Anteil Erneuerbarer Energien an der Stromproduktion deutlich über dem Bundesdurchschnitt von 20,3% im Jahr 2011.²²⁰ Die lokale Stromproduktion speist sich vor allem aus der Nutzung von Windkraft-, Photovoltaik- und Wasserkraftanlagen. Die folgende Abbildung zeigt den derzeitigen Beitrag der Erneuerbaren Energien im Verhältnis zum Gesamtstromverbrauch auf:

²¹⁵ Detailangaben zu den Berechnungsparametern sind der Erläuterung zu den Wirkungsanalysen im Anhang zu entnehmen.

²¹⁶ In diesem Fall ist der zuständige Netzbetreiber für den Landkreis Südwestpfalz: Für die A-Gemeinden die gemeindeeigenen Elektrizitätswerke; für alle anderen die Pfalzwerke AG.

217 Die Daten wurden in folgender Aufteilung übermittelt: Straßenbeleuchtung, Speicherheizung, Gewerbe, öffentliche Liegen-

Die angegebenen Verbrauchswerte innerhalb der Sektoren wurden mit Excel von kWh auf MWh abgerundet, aus diesem Grund kann es zu rundungsbedingten Abweichungen in Bezug auf die Gesamtverbrauchsmenge kommen. ²²⁰ Vgl. BMU 2012: S. 12

Abb. 8-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Zweibrücken-Land

8.1.1.2 Gesamtwärmeverbrauch und Wärmeerzeugung

Die Ermittlung des Gesamtwärmebedarfes auf dem Gebiet der Verbandsgemeinde stellt sich im Vergleich zur Stromverbrauchsanalyse deutlich schwieriger dar. Neben konkreten Verbrauchszahlen für leitungsgebundene Wärmeenergie (Erdgas) kann in der Gesamtbetrachtung aufgrund einer komplexen und zum Teil nicht leitungsgebundenen Versorgungsstruktur lediglich eine Annäherung an tatsächliche Verbrauchswerte erfolgen. Zur Ermittlung des Wärmebedarfes auf Basis leitungsgebundener Energieträger wurden Verbrauchsdaten über die Erdgasliefermengen im Verbrauchsgebiet der Verbandsgemeinde für das Jahr 2011 des Netzbetreibers²²¹ herangezogen. Ferner wurden für die Ermittlung des Wärmebedarfes im privaten Wohngebäudebestand die Daten des Zensus 87²²² und der Baufertigstellungsstatistik 1990 bis 2010²²³ betrachtet und ausgewertet (vgl. dazu Kapitel 8.2).

Des Weiteren wurden die durch das Bundesamt für Wirtschaft und Ausfuhrkontrolle (BAFA) gelieferten Daten über geförderte innovative Erneuerbare-Energien-Anlagen (Solarthermie-Anlagen²²⁴, mechanisch beschickte Bioenergieanlagen²²⁵, Wärmepumpen²²⁶, KWK-Anlagen²²⁷) bis zum Jahr 2012 herangezogen.

Insgesamt konnte für die Verbandsgemeinde ein jährlicher Gesamtwärmeverbrauch von rund 196.000 MWh ermittelt werden.²²⁸

²²¹ In diesem Fall ist der zuständige Netzbetreiber für den gesamten Landkreis: Die Pfalzgas GmbH

Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: a

Vgl. Statistisches Landesamt Rheinland-Pfalz o.J.: b und c

²²⁴ Vgl. Webseite Solaratlas

²²⁵ Vgl. Webseite Biomasseatlas

Vgl. Statistisches Landesamt Rheinland-Pfalz o.J. c

Vgl. Datenübermittlung Alfred Smuck (BAFA) vom 13.11.2012

Der Gesamtwärmeverbrauch setzt sich aus folgenden Punkten zusammen: Angaben zu gelieferten Gasmengen der Netzbetreiber, Hochrechnung des Wärmeverbrauches im privaten Wohngebäudesektor, Angaben der Verwaltung zu kommunalen Liegenschaften sowie statistischen Angaben über den Ölverbrauch der Industrie im Betrachtungsgebiet.

Anteil von ca. Mit einem jährlichen 84% des Gesamtwärmeverbrauches 166.500°MWh/a) stellen die Privaten Haushalte mit Abstand den größten Wärmeverbraucher der Verbandsgemeinde dar. An zweiter Stelle steht die Verbrauchergruppe Industrie, Gewerbe Handel und Dienstleistungen mit einem Anteil von ca. 15% (ca. 29.000°MWh/a). Kommunale Liegenschaften dagegen sind nur zu ca. 1% (ca. 824 MWh/a) am Gesamtwärmeverbrauch beteiligt.

Derzeit können etwa 6% des Gesamtwärmeverbrauches über erneuerbare Energieträger abgedeckt werden. Damit liegt der Anteil Erneuerbarer Energien an der Wärmebereitstellung unter dem Bundesdurchschnitt, der im Jahr 2011 bei 11% lag. 229 In der Verbandsgemeinde Zweibrücken-Land beinhaltet die Wärmeproduktion aus Erneuerbaren Energieträgern vor allem die Verwendung von Biomasse-Festbrennstoffen, solarthermischen Anlagen und Wärmepumpen. Die folgende Darstellung verdeutlicht, dass die Wärmeversorgung im IST-Zustand überwiegend auf fossilen Energieträgern basiert.

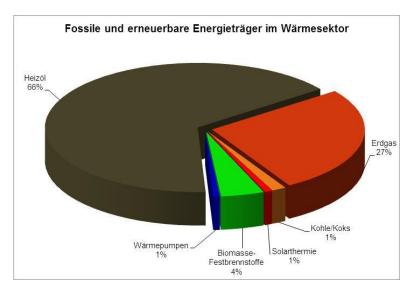


Abb. 8-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Zweibrücken-Land

8.1.1.3 Energieverbrauch im Sektor Verkehr

Im Vergleich zum Energieverbrauch und dem Ausstoß der THG-Emissionen von 1990 sind diese in 2012 nur um 6% gestiegen obwohl sich der Fahrzeugbestand im gleichen Zeitraum um 20% erhöht hat. Der geringe Anstieg des Energieverbrauchs und der THG-Emissionen ist auf Effizienzgewinne zurückzuführen. Bereits 2020 wird eine Reduktion um 5% (Energie) sowie 34% (Emissionen) durch effizientere Technologien, biogene Kraftstoffe und die Zielvorgabe der Bundesregierung von "1 Millionen Elektrofahrzeuge bis 2020 auf Deutschlands Straßen" erfolgen.

²²⁹ Vgl. BMU 2012: S. 14

Dieser Trend wird sich in den Folgejahren fortsetzen, sodass der Endenergieverbrauch bis zum Jahr 2050 auf jährlich rund 62.560 MWh/a fällt sowie die THG-Emissionen auf 0 t/a CO₂. Dies entspricht einer Reduktion von insgesamt ca. 59% (Energie) und 100% (Emissionen) gegenüber dem Basisjahr 1990.

Tab. 8-1: Energiebilanz der VG Zweibrücken - Land

Gesamt	1990	2012	2020	2030	2040	2050
Gesam	MWh	MWh	MWh	MWh	MWh	MWh
Fossile Kraftstoffe	151.187,95	160.156,64	134.988,85	104.632,70	48.330,92	0,00
- Diesel	95.781,96	100.963,36	77.293,36	62.419,29	29.300,82	0,00
- Ottokraftstoff	55.405,99	56.492,50	52.685,96	38.396,85	17.963,47	0,00
- Erdgas	0,00	31,43	1.927,42	1.424,87	782,04	0,00
- Flüssiggas	0,00	2.669,35	3.082,11	2.391,70	284,59	0,00
Erneuerbare Kraftstoffe	0,00	0,00	9.298,80	21.079,01	43.335,87	62.560,57
- Bio-/Windgas	0,00	0,00	5.061,76	8.033,02	12.613,66	11.349,46
- Strom	0,00	0,00	4.237,05	13.046,00	30.722,21	51.211,11
Gesamt	151.187,95	160.156,64	144.287,65	125.711,72	91.666,79	62.560,57
Differenz zu 1990		8.968,69	-6.900,30	-25.476,24	-59.521,16	-88.627,38
Veränderung in Prozent		6%	-5%	-17%	-39%	-59%

Tab. 8-2: Emissionsbilanz der VG Zweibrücken – Land

Gesamt	1990	2012	2020	2030	2040	2050
Gesam	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2	t/a CO2
Fossile Kraftstoffe	40.201,00	42.545,70	26.347,11	19.175,86	8.487,37	0,00
- Diesel	26.989,44	28.449,46	14.140,72	10.493,82	4.919,19	0,00
- Ottokraftstoff	13.211,56	13.465,27	11.011,87	7.807,99	3.338,85	0,00
- Erdgas	0,00	6,35	417,93	297,75	154,80	0,00
- Flüssiggas	0,00	624,63	776,59	576,30	74,54	0,00
Erneuerbare Kraftstoffe	0,00	0,00	0,00	0,00	0,00	0,00
- Bio-/Windgas	0,00	0,00	0,00	0,00	0,00	0,00
- Strom	0,00	0,00	0,00	0,00	0,00	0,00
Gesamt	40.201,00	42.545,70	26.347,11	19.175,86	8.487,37	0,00
Differenz zu 1990		2.344,70	-13.853,89	-21.025,14	-31.713,63	-40.201,00
Veränderung in Prozent		6%	-34%	-52%	-79%	-100%

8.1.1.4 Energieverbrauch im Sektor Abfall / Abwasser

Die Emissionen und Energieverbräuche des Sektors Abfall und Abwasser sind im Kontext des vorliegenden integrierten Klimaschutzkonzeptes sowie der dazugehörigen Treibhausgasbilanz als sekundär zu bewerten und werden aus diesem Grund größtenteils statistisch abgeleitet. Auf den Bereich Abfall und Abwasser ist weniger als 1% der Gesamtemissionen zurückzuführen.²³⁰

Der Energieverbrauch im Bereich der Abfallwirtschaft lässt sich zum einen auf die Behandlung der anfallenden Abfallmengen und zum anderen auf den Abfalltransport zurückführen. Abgeleitet aus den verschiedenen Abfallfraktionen im Entsorgungsgebiet fielen in der Verbandgemeinde Zweibrücken-Land²³¹ im Jahr 2011 insgesamt rund 6.700 t Abfall an.

²³⁰ Bezogen auf die nicht-energetischen Emissionen. Die Emissionen aus dem stationären Energieverbrauch und dem Verkehr sind bereits in den entsprechenden Kapiteln enthalten und werden nicht separat für den Abfall- und Abwasserbereich dargestellt. ²³¹ Vgl. Ministerium für Wirtschaft, Klimaschutz, Energie und Landesplanung Rheinland-Pfalz 2012

Die durch die Abfallbehandlung entstehenden THG-Emissionen im stationären- sowie im Transportbereich, finden sich im Rahmen der Energie- und Treibhausgasbilanz im Sektor Strom, Wärme und Verkehr wieder. Das deutschlandweite Verbot einer direkten Mülldeponierung seit 2005 und die gesteigerte Kreislaufwirtschaft führten dazu, dass die Emissionen, die dem Abfallsektor zuzurechnen waren, stark gesunken sind. Die Abfallentsorgung in Müllverbrennungsanlagen erfolgt vollständig unter energetischer Nutzung, sodass derzeit lediglich die Emissionen der Bio- und Grünabfälle mit einem Faktor von 17 kg CO₂e/t Abfall²³² berechnet werden. Für das Betrachtungsgebiet konnte in dieser Fraktion eine Menge von 939 t/a ermittelt werden. Demnach werden jährlich ca. 16 t CO₂-e verursacht.

Die Energieverbräuche zur Abwasserbehandlung sind ebenfalls im stationären Bereich der Bilanz eingegliedert (Strom und Wärme) und fließen auch in diesen Sektoren in die Treibhausgasbilanz ein. Zusätzliche Emissionen entstehen aus der Abwasserreinigung (N₂O durch Denitrifikation) und der anschließenden Weiterbehandlung des Klärschlamms (stoffliche Verwertung). Gemäß den Einwohnerwerten (Berechnung der N₂O-Emissionen) für das Betrachtungsjahr 2011 sowie Angaben des Statistischen Landesamtes Rheinland-Pfalz zur öffentlichen Klärschlammentsorgung²³³ wurden für den IST-Zustand der Abwasserbehandlung Emissionen in Höhe von ca. 324 t CO₂-e ermittelt.

8.1.2 Zusammenfassung Gesamtenergieverbrauch - nach Sektoren und Energieträgern

Der Gesamtenergieverbrauch bildet sich als Summe der zuvor beschriebenen Teilbereiche und beträgt im abgeleiteten "IST-Zustand"²³⁴ ca. 400.000 MWh/a. Der Anteil der Erneuerbaren Energien am stationären Verbrauch²³⁵ (exklusive Verkehr) liegt in der Verbandsgemeinde durchschnittlich bei 15%. Die nachfolgende Grafik zeigt einen Gesamtüberblick über die derzeitigen Energieverbräuche auf, unterteilt nach Energieträgern und Sektoren:

²³² Vgl. Difu 2011: S. 266

Vgl. Statistisches Landesamt Rheinland-Pfalz 2012

An dieser Stelle ist zu erwähnen, dass sich die Datenquellen der verschiedenen Bausteine zur Errechnung des Gesamtenergieverbrauches auf unterschiedliche Bezugsjahre beziehen. Da kein einheitliches Bezugsjahr über alle Datenquellen hinweg angesetzt werden konnte, hat der Konzeptersteller jeweils den aktuellsten Datensatz verwandt. In den betroffenen Verbrauchsbereichen wurde davon ausgegangen, dass sich die Verbrauchsmengen in den letzten Jahren nicht signifikant verändert haben.

²³⁵ Hier wird der Vergleich mit dem stationären Energieverbrauch herangezogen, da im IST-Zustand mit der gegebenen Statistik keine erneuerbaren Energieträger als Treibstoff zu ermitteln waren.

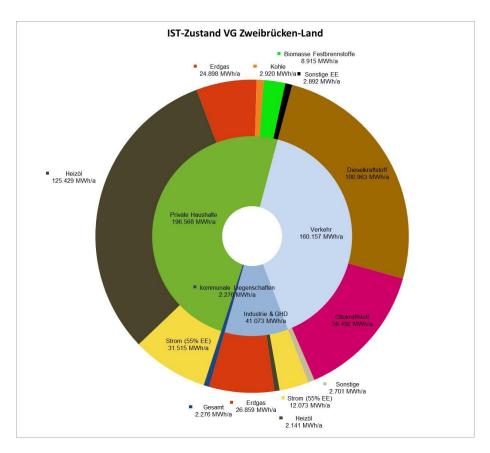


Abb. 8-3: Gesamtenergieverbrauch der Verbandsgemeinde Zweibrücken-Land im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren

Die zusammengefügte Darstellung der Energieverbräuche nach Verbrauchergruppen lässt erste Rückschlüsse über die dringlichsten Handlungssektoren des Klimaschutzkonzeptes zu. Das derzeitige Versorgungssystem ist augenscheinlich durch den Einsatz fossiler Energieträger geprägt. Für die regenerativen Energieträger ergibt sich demnach ein großer Ausbaubedarf. Des Weiteren lässt sich ableiten, dass die kommunalen Liegenschaften und Einrichtungen des Betrachtungsgebietes aus energetischer Sicht nur in geringem Maße zur Bilanzoptimierung beitragen können. Dennoch wird die Optimierung dieses Bereiches – insbesondere in Hinblick auf die Vorbildfunktion der Verbandsgemeinde gegenüber den weiteren Verbrauchergruppen – als besonders notwendig erachtet.

Den größten Energieverbrauch mit ca. 197.000°MWh/a verursachen in der Verbandsgemeinde Zweibrücken-Land die Privaten Haushalte. Folglich entsteht hier auch der größte Handlungsbedarf, welcher sich vor allem im Einsparpotenzial der fossilen Wärmeversorgung widerspiegelt. Zweitgrößte Verbrauchergruppe ist der Verkehrssektor mit einem ermittelten Verbrauch von ca. 160.000°MWh/a. Im Hinblick auf die Verbrauchsgruppe Industrie und GHD entsteht ein Energieverbrauch von rund 41.000°MWh/a. Die Verbandsgemeinde kann auf diese Verbrauchssektoren einen indirekten Einfluss nehmen, um die Energiebilanz und die damit einhergehenden ökologischen und ökonomischen Effekte zu verbessern.

8.1.3 Treibhausgasemissionen der Verbandsgemeinde Zweibrücken-Land

Ziel der Treibhausgasbilanzierung auf kommunaler Ebene ist es, spezifische Referenzwerte für zukünftige Emissionsminderungsprogramme zu erheben. In der vorliegenden Bilanz werden auf Grundlage der zuvor erläuterten verbrauchten Energiemengen die territorialen Treibhausgasemissionen (CO₂e) in den Bereichen Strom, Wärme, Verkehr sowie Abfall und Abwasser quantifiziert. Die folgende Darstellung bietet einen Gesamtüberblick der relevanten Treibhausgasemissionen der Verbandsgemeinde, welche sowohl für den IST-Zustand als auch für das Basisjahr 1990 errechnet wurden.

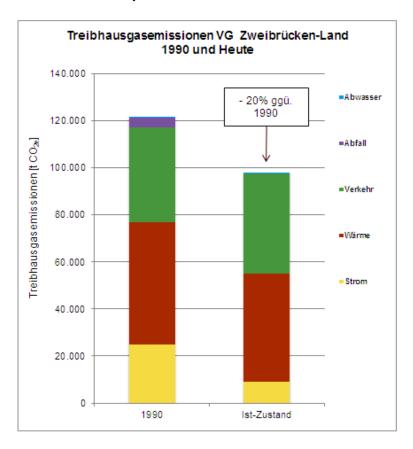


Abb. 8-4: Treibhausgasemissionen der Verbandsgemeinde Zweibrücken-Land (1990 und IST-Zustand)

Im Referenzjahr 1990 wurden aufgrund des Energieverbrauches²³⁶ der Verbandsgemeinde ca. 122.000°t CO₂-e emittiert. Für den ermittelten IST-Zustand wurden jährlich Emissionen von etwa 98.000 t/CO₂-e kalkuliert. Gegenüber dem Basisjahr 1990 konnten somit bereits ca. 20% der Emissionen eingespart werden.

²³⁶ Im Rahmen der retrospektiven Bilanzierung für das Basisjahr 1990 konnte auf keine Primärdatensätze zurückgegriffen werden. Der Stromverbrauch wurde anhand des Gesamtstromverbrauches von Rheinland-Pfalz (Vgl. Statistisches Landesamt Rheinland-Pfalz 2012: S. 18) über Einwohneräquivalente und Pro-Kopf-Verbrauchsentwicklungen von Rheinland-Pfalz auf 1990 rückgerechnet. Der Wärmeverbrauch der Privaten Haushalte konnte auf statistischer Grundlage zur Verteilung der Feuerungsanlagen und Wohngebäude (Zensus 1987) auf das Basisjahr zurückgerechnet werden. Die Rückrechnung für den Sektor Industrie & GHD erfolgte über die Erwerbstätigen am Arbeitsort (Vgl. AK ETR 2010). Dabei wurde von heutigen Verbrauchsdaten ausgegangen. Die Emissionen im Sektor Verkehr konnten durch die Zulassungen und Verbrauchswerte des Fahrzeugbestandes im Jahr 1990 berechnet werden. Verbrauchsdaten im Abfall- und Abwasserbereich wurden auf Grundlage der Landesstatistiken (Vgl. Ministerium für Umwelt, Forsten und Verbraucherschutz o.J.: S. 13 ff. und Statistisches Landesamt Rheinland-Pfalz 2012: S.4) in diesem Bereich auf 1990 rückgerechnet.

Große Einsparungen entstanden vor allem im Strombereich, welche sowohl auf den Ausbau der Windkraft-, Photovoltaik- und Wasserkraftanlagen als auch auf eine bundesweite Verbesserung des anzusetzenden Emissionsfaktors im Stromsektor zurückzuführen sind.²³⁷ Im Stromsektor kann demnach von einer Reduktionsentwicklung von ca. 63% ausgegangen werden.

Insgesamt stellt der Wärmebereich derzeit mit ca. 47% den größten Verursacher der Treibhausgasemissionen dar und bietet den größten Ansatzpunkt für Einsparungen, welche im weiteren Verlauf des Klimaschutzkonzeptes (insbesondere im Maßnahmenkatalog) erläutert werden.

8.2 Energieeffizienz

In der Verbandsgemeinde Zweibrücken-Land befinden sich zum Jahr 2010 insgesamt 5.559 Wohngebäude mit einer Wohnfläche von ca. 840.000 m². ²³⁸ Die Gebäudestruktur teilt sich in 67% Einfamilienhäuser, 28% Zweifamilienhäuser und 5% Mehrfamilienhäuser.

Die folgende Tabelle gibt einen Überblick des Wohngebäudebestandes der VG (nach Baualtersklassen unterteilt).

Tab. 8-3: Wohngebäudebestand der VG Zweibrücken-Land nach Baualtersklassen²³⁹

Altersklasse	Prozentualer Anteil	Wohngebäude nach Altersklassen	Davon Ein- und Zweifamilienhäuser	Davon Mehrfamilienhäuser
bis 1918	15,21%	846	802	43
1919 - 1948	12,78%	710	674	36
1949 - 1978	42,63%	2.370	2.248	121
1979 - 1990	14,80%	823	781	42
1991 - 2000	10,72%	596	565	31
2001 - Heute	3,86%	215	204	11
Gesamt	100%	5.559	5.274	285

Insgesamt existieren in der Verbandsgemeinde 4.609 Primärheizer und 2.674 Sekundärheizer (z. B. Holzeinzelöfen). Die Verteilung der Heizenergieanlagen ist in nachfolgender Tabelle dargestellt.

© IfaS 2013 118

 $^{^{237}}$ Für das Jahr 1990 wurde ein CO₂-e-Faktor von 683 g/kWh exklusive der Vorketten berechnet. Berechnungsgrundlage ist an dieser Stelle Gemis 4.7 in Anlehnung an die Kraftwerksstruktur zur Stromerzeugung im Jahr 1990 (Vgl. BMU 2010) 238 Vgl. Statistisches Landesamt Rheinland-Pfalz, 2010

Vgl. Destatis, schriftliche Mitteilung von Frau Leib-Manz (Bereich Bautätigkeiten), Verteilung innerhalb der Baualtersklassen – Tabelle zur Aufteilung des Deutschen Wohngebäudebestandes nach Bundesländern und Baualtersklassen, am 15.09.2010.

Tab. 8-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträger

Energieträger	Primärheizer	Sekundärheizer			
Öl	3.771	956			
Gas	767	24			
Strom	71	414			
Kohle, Holz		1.280			
Summe	4.609	2.674			
Gesamt	7.283				

Außerdem gibt es in der VG noch 75 Wärmepumpen und durch das Marktanreizprogramm geförderte Biomasseanlagen mit insgesamt 3.252 kW installierter Leistung.

Es ergibt sich ein gesamter Heizwärmeverbrauch der privaten Wohngebäude innerhalb der Verbandsgemeinde von derzeit 167 GWh/a.

Insbesondere bei veralteten Heizungsanlagen ist ein hohes Einsparpotenzial vorhanden. Folgende Tabelle stellt die Anzahl der Anlagen für Öl- und Gasheizungen nach Baualtersklassen dar:

Tab. 8-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen

Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen								
	bis 1978	1979-1982	1983-1988	1988-1997	1998-2008	ab 2009		
ÖI	242	178	543	1.629	1.147	31		
Gas	13	24	93	392	238	8		

Eigene Liegenschaften:

Aufgrund eines Heizwärmeverbrauchs der auswertbaren 8 eigenen Gebäude in der Verbandsgemeinde (siehe Tab. 8-6) von 603 MWh im Jahr 2011 (bei 3.200 m² Nutzfläche), wurden für die einzelnen Gebäude der spezifische Heizwärmeverbrauch in kWh/(m²*a) ermittelt und in folgender Abbildung dargestellt.

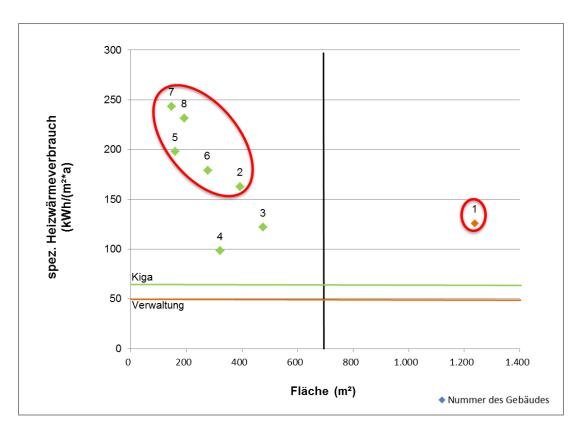


Abb. 8-5: VG Zweibrücken-Land – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche

Tab. 8-6: Übersicht öffentliche Liegenschaften

Nr.	Öffentliche Liegenschaften
1	Verbandsgemeindeverwaltung
2	Kindergarten Bechhofen
3	Kindergarten Dellfeld
4	Kindergarten Großbundenbach
5	Kindergarten Großsteinhausen
6	Kindergarten Kleinsteinhausen
7	Kindergarten Riedelberg
8	Kindergarten Wiesbach

Tab. 8-7: Gebäude mit hohen Wärmeverbräuchen

Nr.	Gebäude	BGF (m²)	Verbrauch (kWh/a)
1	Verbandsgemeindeverwaltung	1.238	199.110
2	Kindergarten Bechhofen	394	82.000
5	Kindergarten Großsteinhausen	161	40.660
6	Kindergarten Kleinsteinhausen	277	63.330
7	Kindergarten Riedelberg	147	45.750
8	Kindergarten Wiesbach	194	57.240

Die Gesamtleistung der 33 Heizungsanlagen beträgt 1.294 kW und verteilt sich auf die einzelnen Energieträger wie in folgender Tabelle dargestellt:

Tab. 8-8: Leistung der Heizungsanlagen nach Energieträger

Energieträger	Anzahl	Leistung (kW)
Öl	14	992
Gas	11	292
Holz	2	
Elektro	4	10
Nachtspeicher	1	
Infrarot	1	
Summe	33	1294

© IfaS 2013 121

8.3 Erneuerbarer Energien

8.3.1 Photovoltaikpotenzial auf Freiflächen

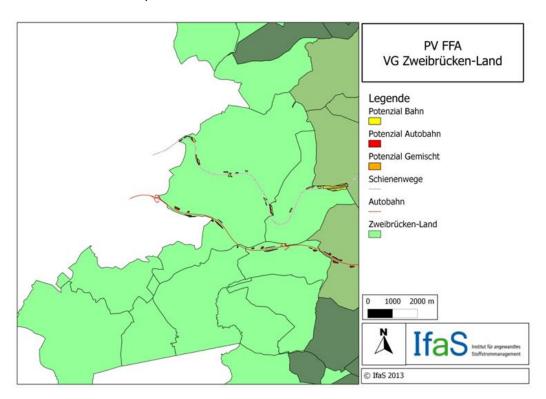


Abb. 8-6: Photovoltaikpotenzial auf Freiflächen der VG Zweibrücken-Land

Tab. 8-9: Photovoltaikpotenzial auf Freiflächen der VG Zweibrücken-Land

Ausbaupotenziale PV-FFA					
Standorttyp	Anzahl (Stück)	Fläche (m²)	Install. Leistung ¹ (kWp)	Stromerträge ² (MWh/a)	
Schienenwege	17	157.000	6.300	5.700	
Autobahn	13	77.000	3.100	2.800	
Gesamt	30	234.000	9.400	8.500	
1: 25 m²/kWP 2: 900 kWh*a/kWP					

8.3.2 Solarenergiepotenzial auf Dachflächen

Tab. 8-10: Solarenergiepotenzial auf Dachflächen VG Zweibrücken-Land

Ausbaupotenziale Solarenergie auf Dachflächen						
Photov		Solarthermie				
Installierbare Leistung ¹ Stromerträge (kWp) (MWh/a)		Kollektorfläche ² (m²)	Wärmeerträge ³ (MWh/a)	Heizöläquivalente ⁴ (I)		
48.000	41.300	92.000	34.000	4.254.000		
1) 7 m² pro kWp Dickschicht/12	,5 m² pro kWp Dünnschicht	5) Techn. Potenzial	l - Bestand = Ausbau	potenzial		
2) 14 m² Solarthermie pro Dach	Bestand ST: Angaben der BAFA zu geförderten Anlagen					
3) Ertrag von 350 kWh/m² Solart	Bestand PV: Angaben aus EEG Anlagenregister 2011					
4) Verdrängung Ölheizung		Werte auf volle hu	ndert gerundet			

8.3.3 Windenergiepotenzial

Tab. 8-11: Windenergiepotenzial VG Zweibrücken-Land

Ausbaupotenziale Windenergie					
Potenzialfläche (ha)	Anteil (%)	mögliche WEA	Install. Leistung (MW)	Stromerträge (GWh/a)	
926	8	64	147,2	311	

© IfaS 2013 123

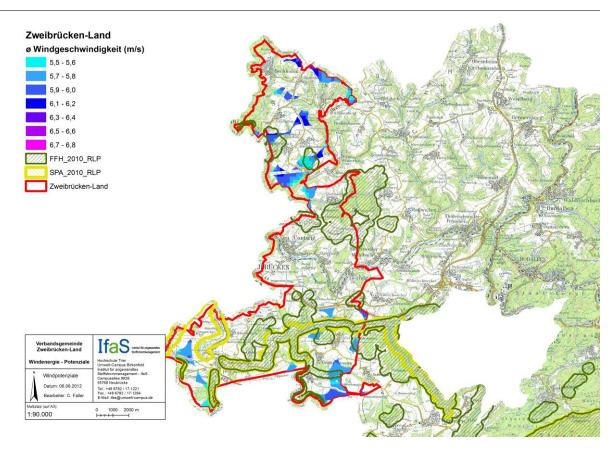
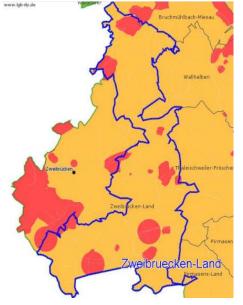



Abb. 8-7: Windenergiepotenzial VG Zweibrücken-Land

8.3.4 Geothermiepotenzial

In der Verbandsgemeinde Zweibrücker-Land sind mehrere kritische Bereiche zu erkennen, die jedoch zum größten Teil außerhalb von Ortsgemeinden liegen. Der restliche Teil der Verbandsgemeinde befindet sich auf Gebieten, die mit zusätzlichen Auflagen meist genehmigungsfähig sind.

Abb. 8-8: Geothermiepotenzial VG Zweibrücken-Land

8.3.5 Biomassepotenzial

Tab. 8-12: Biomassepotenzial VG Zweibrücken-Land

Ausbaupotenziale Biomasse							
Festbrennstoffe Fortst	Festbrennstoffe aus Ackerflächen	Festbrennstoffe aus Grünschnitt und Landschaftspfle	Biogassubstrate	Biogassubstrate aus Ackerflächen	Biogassubstrate aus Dauergrünland	Biogassubstrate organische Abfälle	Gesamt
[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]	[MWh/a]
8.171	20.046	1.663	11.201	17.854	0	1.212	60.147

8.3.6 Wasserkraftpotenzial

Tab. 8-13: Wasserkraftpotenzial VG Zweibrücken-Land

Ausbaupotenziale Wasserkraft						
		installierte	Arbeits-	Volllast-	Bundes-	
Gewässer	Name der Anlage	Leistung	vermögen	stunden	durchschnitt	
		[kW]	[kWh/a]	[h]	[h]	
Schwarzbach	Mühle Maurer	60	164.075	2.735	3.500	
Hombach	Großsteinhausemühle	17	30.424	1.790	3.500	
Hombach	Reidinger	25	63.707	2.548	3.500	
	Dudelbinger Hof	253	916.500	3.623	4.000	

© IfaS 2013 125

9 Tabellenverzeichnis

Tab. 1-1: Energiebilanz der VG Dahner Land	5
Tab. 1-2: Emissionsbilanz der VG Dahner Land	5
Tab. 1-3: Wohngebäudebestand der VG Dahner Felsenland nach Baualtersklassen	9
Tab. 1-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträge	r 10
Tab. 1-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen	10
Tab. 1-6: Übersicht Öffentliche Liegenschaften	11
Tab. 1-7: Gebäude mit hohen Wärmeverbräuchen	12
Tab. 1-8: Leistung der Heizungsanlagen nach Energieträger	12
Tab. 1-9: Photovoltaikpotenzial auf Freiflächen VG Dahner-Felsenland	13
Tab. 1-10: Solarenergiepotenzial auf Dachflächen VG Dahner Felsenland	14
Tab. 1-11: Windenergiepotenzial VG Dahner-Felsenland	14
Tab. 1-12: Biomassepotenzial VG Dahner-Felsenland	16
Tab. 1-13: Wasserkraftpotenzial VG Dahner-Felsenland	16
Tab. 2-1: Energiebilanz der VG Hauenstein	21
Tab. 2-2: Emissionsbilanz der VG Hauenstein	21
Tab. 2-3: Wohngebäudebestand der VG Hauenstein nach Baualtersklassen	25
Tab. 2-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträge	er 26
Tab. 2-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen	26
Tab. 2-6: Übersicht Öffentliche Liegenschaften	27
Tab. 2-7: Gebäude mit hohen Wärmeverbräuchen	28
Tab. 2-8: Leistung der Heizungsanlagen nach Energieträger	28
Tab. 2-9: Photovoltaik Freiflächenpotenzial VG Hauenstein	29
Tab. 2-10: Solarenergiepotenzial auf Dachflächen VG Hauenstein	30
Tab. 2-11: Windenergiepotenzial VG Hauenstein	30
Tab. 2-12: Biomassepotenzial VG Hauenstein	32
Tab. 3-1: Energiebilanz der VG Pirmasenser Land	37
Tab. 3-2: Emissionsbilanz der VG Pirmasenser Land	37

Tab. 3-3: Wohngebäudebestand der VG Pirmasens-Land nach Baualtersklassen	41
rab. 3-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträ	iger 42
Tab. 3-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen	42
Tab. 3-6: Übersicht Öffentliche Liegenschaften	43
Tab. 3-7: Gebäude mit hohen Wärmeverbräuchen	44
「ab. 3-8: Leistung der Heizungsanlagen nach Energieträger	44
Tab. 3-9: Solarenergiepotenziale auf Dachflächen VG Pirmasens-Land	45
Tab. 3-10: Windenergiepotenzial VG Pirmasens-Land	46
Tab. 3-11: Biomassepotenzial VG Pirmasens-Land	47
Гаb. 4-1: Energiebilanz der VG Rodalben	52
Гаb. 4-2: Emissionsbilanz der VG Rodalben	52
Tab. 4-3: Wohngebäudebestand der VG Rodalben nach Baualtersklassen	56
Tab. 4-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträ	iger 57
Tab. 4-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen	57
Tab. 4-6: Übersicht Öffentliche Liegenschaften	58
「ab. 4-7: Gebäude mit hohen Wärmeverbräuchen	59
Гаb. 4-8: Leistung der Heizungsanlagen nach Energieträger	59
Tab. 4-9: Photovoltaikpotenzial auf Freiflächen VG Rodalben	60
Гаb. 4-10: Solarenergiepotenzial auf Dachflächen VG Rodalben	61
Гаb. 4-11: Windenergiepotenzial VG Rodalben	61
Гаb. 4-12: Biomassepotenzial VG Rodalben	63
Гаb. 5-1: Energiebilanz der VG Thaleischweiler - Fröschen	68
Гаb. 5-2: Emissionsbilanz der VG Thaleischweiler – Fröschen	68
Гаb. 5-3: Wohngebäudebestand der VG Thaleischweiler-Fröschen nach Baualtersklas	sen 72
Гаb. 5-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträ	iger 73
Гаb. 5-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen	73
Tab. 5-6: Übersicht Öffentliche Liegenschaften	74
Fab. 5-7: Gebäude mit hohen Wärmeverbräuchen	75

© IfaS 2013 VIII

Tab. 5-8: Leistung der Heizungsanlagen nach Energieträger	75
Tab. 5-9: Photovoltaikpotenzial auf Freiflächen VG Thaleischweiler-Fröschen	76
Tab. 5-10: Solarenergiepotenzial auf Dachflächen VG Thaleischweiler-Fröschen	77
Tab. 5-11: Windenergiepotenzial VG Thaleischweiler-Fröschen	77
Tab. 5-12: Biomassepotenzial VG Thaleischweiler-Fröschen	79
Tab. 5-13: Wasserkraftpotenzial VG Thaleischweiler-Fröschen	79
Tab. 6-1: Energiebilanz der VG Waldfischbach – Burgalben	84
Tab. 6-2: Emissionsbilanz der VG Waldfischbach – Burgalben	84
Tab. 6-3: Wohngebäudebestand der VG Waldfischbach-Burgalben nach Baualtersklass	en 88
Tab. 6-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energieträg	er 89
Tab. 6-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen	89
Tab. 6-6: Übersicht Öffentliche Liegenschaften	90
Tab. 6-7: Gebäude mit hohen Wärmeverbräuchen	91
Tab. 6-8: Leistung der Heizungsanlagen nach Energieträger	91
Tab. 6-9: Photovoltaikpotenzial auf Freiflächen VG Waldfischbach-Burgalben	92
Tab. 6-10: Solarenergiepotenzial auf Dachflächen VG Waldfischbach-Burgalben	93
Tab. 6-11: Windenergiepotenzial VG Waldfischbach-Burgalben	93
Tab. 6-12: Biomassepotenzial VG Waldfischbach-Burgalben	94
Tab. 6-13: Wasserkraftpotenzial VG Waldfischbach-Burgalben	95
Tab. 7-1: Energiebilanz der VG Wallhalben	100
Tab. 7-2: Emissionsbilanz der VG Wallhalben	100
Tab. 7-3: Wohngebäudebestand der VG Wallhalben nach Baualtersklassen	104
Tab. 7-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energiet	_
Tab. 7-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen	105
Tab. 7-6: Photovoltaikpotenzial auf Freiflächen VG Wallhalben	106
Tab. 7-7: Solarenergie auf Dachflächen VG Wallhalben	107
Tab. 7-8: Windenergiepotenzial VG Wallhalben	107
Tab. 7-9: Biomassepotenzial VG Wallhalben	109

Tab. 8-1: Energiebilanz der VG Zweibrücken – Land	114
Tab. 8-2: Emissionsbilanz der VG Zweibrücken – Land	114
Tab. 8-3: Wohngebäudebestand der VG Zweibrücken-Land nach Baualtersklassen	118
Tab. 8-4: Aufteilung der Primärheizer und Sekundärheizer auf die einzelnen Energie	_
Tab. 8-5: Anzahl der Heizanlagen Öl und Gas nach Baualtersklassen	119
Tab. 8-6: Übersicht öffentliche Liegenschaften	120
Tab. 8-7: Gebäude mit hohen Wärmeverbräuchen	120
Tab. 8-8: Leistung der Heizungsanlagen nach Energieträger	121
Tab. 8-9: Photovoltaikpotenzial auf Freiflächen der VG Zweibrücken-Land	122
Tab. 8-10: Solarenergiepotenzial auf Dachflächen VG Zweibrücken-Land	123
Tab. 8-11: Windenergiepotenzial VG Zweibrücken-Land	123
Tab. 8-12: Biomassepotenzial VG Zweibrücken-Land	125
Tab. 8-13: Wasserkraftpotenzial VG Zweibrücken-Land	125

© IfaS 2013 X

10 Abbildungsverzeichnis

Abb. 1-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde
Dahner Felsenland3
Abb. 1-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Dahner Felsenland 4
Abb. 1-3: Gesamtenergieverbrauch der Verbandsgemeinde Dahner Felsenland im IST- Zustand unterteilt nach Energieträgern und Verbrauchssektoren7
Abb. 1-4: Treibhausgasemissionen der Verbandsgemeinde Dahner Felsenland (1990 und IST-Zustand)
Abb. 1-5: VG Dahner Felsenland – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche
Abb. 1-6: Photovoltaikpotenzial auf Freiflächen VG Dahner-Felsenland
Abb. 1-7: Windenergiepotenzial VG Dahner-Felsenland
Abb. 1-8: Geothermiepotenzial VG Dahner-Felsenland
Abb. 2-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Hauenstein
Abb. 2-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Hauenstein20
Abb. 2-3: Gesamtenergieverbrauch der Verbandsgemeinde Hauenstein im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren
Abb. 2-4: Treibhausgasemissionen der Verbandsgemeinde Hauenstein (1990 und IST- Zustand)
Abb. 2-5: VG Hauenstein – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche27
Abb. 2-6: Photovoltaik Freiflächenpotenzial VG Hauenstein
Abb. 2-7: Windenergiepotenzial VG Hauenstein
Abb. 2-8: Geothermiepotenzial der VG Hauenstein
Abb. 3-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Pirmasens-Land
Abb. 3-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Pirmasens-Land 36
Abb. 3-3: Gesamtenergieverbrauch der Verbandsgemeinde Pirmasens-Land im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren

© IfaS 2013 XI

Abb. 3-4: Treibhausgasemissionen der Verbandsgemeinde Pirmasens-Land (1990 und IST-
Zustand)
Abb. 3-5: VG Pirmasens-Land – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche
Abb. 3-6: Windenergiepotenzial VG Pirmasens-Land
Abb. 3-7: Geothermiepotenzial VG Pirmasens-Land
Abb. 4-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Rodalben
Abb. 4-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Rodalben51
Abb. 4-3: Gesamtenergieverbrauch der Verbandsgemeinde Rodalben im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren
Abb. 4-4: Treibhausgasemissionen der Verbandsgemeinde Rodalben (1990 und IST- Zustand)
Abb. 4-5: VG Rodalben – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche
Abb. 4-6: Photovoltaikpotenzial auf Freiflächen VG Rodalben
Abb. 4-7: Windenergiepotenzial VG Rodalben
Abb. 4-8: Geothermiepotenzial VG Rodalben
Abb. 5-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Thaleischweiler-Fröschen
Abb. 5-2: der Wärmeerzeuger in der Verbandsgemeinde Thaleischweiler-Fröschen 67
Abb. 5-3: Gesamtenergieverbrauch der Verbandsgemeinde Thaleischweiler-Fröschen im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren
Abb. 5-4: Treibhausgasemissionen der Verbandsgemeinde Thaleischweiler-Fröschen (1990 und IST-Zustand)
Abb. 5-5: VG Thaleischweiler-Fröschen – Gebäudevergleich auf spezifischen
Heizwärmeverbrauch und deren Fläche74
Abb. 5-6: Photovoltaikpotenzial auf Freiflächen VG Thaleischweiler-Fröschen
Abb. 5-7: Windenergiepotenzial VG Thaleischweiler-Fröschen
Abb. 6-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Waldfischbach-Burgalben

© IfaS 2013 XII

Abb. 6-2: Ubersicht der Wärmeerzeuger in der Verbandsgemeinde Waldfischbach-Burgalben
Abb. 6-3: Gesamtenergieverbrauch der Verbandsgemeinde Waldfischbach-Burgalben im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren
Abb. 6-4: Treibhausgasemissionen der Verbandsgemeinde Waldfischbach-Burgalben (1990 und IST-Zustand)
Abb. 6-5: VG Waldfischbach-Burgalben – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche
Abb. 6-6: Photovoltaikpotenzial auf Freiflächen VG Waldfischbach-Burgalben92
Abb. 6-7: Windenergiepotenzial VG Waldfischbach-Burgalben
Abb. 6-8: Geothermiepotenzial VG Waldfischbach-Burgalben
Abb. 7-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Wallhalben
Abb. 7-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Wallhalben
Abb. 7-3: Gesamtenergieverbrauch der Verbandsgemeinde Wallhalben im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren
Abb. 7-4: Treibhausgasemissionen der Verbandsgemeinde Wallhalben (1990 und IST-Zustand)
Abb. 7-5: Photovoltaikpotenzial auf Freiflächen VG Wallhalben
Abb. 7-6: Windenergiepotenzial VG Wallhalben
Abb. 7-7: Geothermiepotenzial VG Wallhalben
Abb. 8-1: Aufteilung der Energieträger zur Stromversorgung in der Verbandsgemeinde Zweibrücken-Land
Abb. 8-2: Übersicht der Wärmeerzeuger in der Verbandsgemeinde Zweibrücken-Land 113
Abb. 8-3: Gesamtenergieverbrauch der Verbandsgemeinde Zweibrücken-Land im IST-Zustand unterteilt nach Energieträgern und Verbrauchssektoren
Abb. 8-4: Treibhausgasemissionen der Verbandsgemeinde Zweibrücken-Land (1990 und IST-Zustand)
Abb. 8-5: VG Zweibrücken-Land – Gebäudevergleich auf spezifischen Heizwärmeverbrauch und deren Fläche
Abb. 8-6: Photovoltaikpotenzial auf Freiflächen der VG Zweibrücken-Land

© IfaS 2013 XIII

Abb. 8-7: Windenergiepotenzial VG Zweibrücken-Land	. 124
Abb. 8-8: Geothermiepotenzial VG Zweibrücken-Land	. 124

© IfaS 2013 XIV