Ortsgemeinde Lug, Entwässerung im Neubaugebiet Laubendöll

Ergänzungen zur Genehmigungsplanung (Stand November 2022)

Der Genehmigungsentwurf "Entwässerung im NBG Laubendöll, Stand November 2022" wurde gemäß §103 LWG durch einen Sachverständigen, hier die Björnsen Beratende Ingenieure GmbH, geprüft. Gemäß Prüfprotokoll vom 27.04.2023 wurden mehrere Punkte angemerkt. Zusätzlich wurde die zwischenzeitlich fertiggestellte Entwurfsplanung des Straßenbauplanung im Genehmigungsentwurf ergänzt. Nachfolgend sind die Ergänzungen und Anmerkungen beschrieben und dem Entwurf als Anlage beigefügt (die Pläne V.1 – V.5 des bestehenden Genehmigungsentwurfs sind auszutauschen bzw. der Plan V.6 zu ergänzen)

1. Wasserbilanz

Für das geplante Baugebiet wurde zwischenzeitlich eine Wasserbilanz aufgestellt. Diese wurde im Juli 2023 im Zuge einer B-Plan Anpassung an die Genehmigungsbehörde übersendet.

2. Auftriebssicherung der Beckensohle des geplanten Rückhaltebeckens Der Beckenstandort hat sich im Zuge der Entwurfsplanung gegenüber dem Baugrund-Untersuchungstag geändert. Das Becken ist dabei um ca. 17,50m nach Süden verschoben worden, da Teile des Flurstücks 112/1 beim Eigentümer verbleiben sollen. Nach Rücksprache mit dem Baugrundgutachter sind für den neuen Standort folgende Werte ausschlaggebend bzw. anzusetzen:

gemessene Wasserstände 219,50 mNHN (RKS5) und 218,60mNHN (RKS6)

- -> Mittelwert 219,05 mNHN
- → der höchste Grundwasserstand (Ansatz + 1,00) ca. 220,00 m NHN
- → Bemessungswasserstand (MHGW) ca. 219,50 m NHN
- → Gemäß dem neuen Regelwerk DWA A138-1 wird der Abstand zwischen Beckensohle und MHGW nicht mehr mit pauschal mit 1,0 m angesetzt, sondern in Abhängigkeit projektspezifischer Parameter festgelegt. Nach Abstimmung mit der unteren Wasserbehörde (KV) und ihrem Prüfbüro kann der Abstand reduziert werden, da im Plangebiet nur Flächen der Belastungskategorie 1 angeschlossen werden, das Becken nicht im Dauerstau betrieben wird, keine Wasserschutzgebiete betroffen sind und sich das Gewässer Lugbach in unmittelbarer Nähe befindet.

 Eine Beckenabdichtung mit Auftriebssicherung wird somit nicht erforderlich.

3. Anpassungen im Zuge der Straßenbauplanung

Zum Zeitpunkt des Genehmigungsantrag, im November 2022, lag für das geplante NBG Laubendöll nur ein Bebauungsplan und noch keine Straßenbauplanung vor. Die bisherige Entwässerungsplanung im Baugebiet wurde daher gemäß dem Entwässerungskonzept angeordnet. Die Straßenbauplanung (Stand Juli 2023) sieht, entgegen der bisherigen Annahme, keine zum Gelände parallele Gradiente vor, vielmehr wird am Hochpunkt das Gelände um ca. 1,80m abgesenkt, um ein durchgängiges Gefälle, aus dem NBG heraus, in die Waldstraße herzustellen.

In Bezug auf die bisherige Entwässerungsplanung sind die Leitungstiefen anzupassen. Die flächenmäßige Aufteilung des NBG hin zur Felsen- und Waldstraße bleibt unverändert, es ergeben sich keine Auswirkungen auf die bisherigen Flächen- bzw. Genehmigungskennwerte.

4. unbefestigte Grünflächen

Für die unbefestigten Grünflächen im NBG wurde angesetzt, dass nach der Herstellung der Gebäude eine weitestgehende ebene Oberfläche auf den Grundstücken hergestellt wird. Demnach wurde, gemäß ATV-A 138 Tabelle 2, für die Grünflächen ein Abflussbeiwert von $\psi_m = 0.0$ in Ansatz gebracht.

5. Bemessung Rückhalteraum

- Zur Bemessung des RHB ist der Anschlusswert A_{ba} = 0,338 ha zu verwenden. Daraus ableitend ergibt sich ein höheres erforderliches Speichervolumen von V_{erf} = 156 m³. Das erforderliche Volumen mit 156 m³ liegt unterhalb der geplanten Beckengröße von V_{gepl} = 158m³.
- Das geplante Freibord am RHB wird erhöht. Gemäß ATV-A 176, Tabelle 3 beträgt das Freibord mindesten 35cm für Rückhalteeinrichtungen. Der geplante Damm wird um 15cm erhöht, die Breite der Dammkrone reduziert sich entsprechend der Böschungsneigung 1:2 auf 0,90m.

6. Bewertung der Einleitung in ein Oberflächengewässer nach DWA-A/M 102

emissionsbezogene Bewertung

Die geplanten befestigten Flächen im Planungsgebiet können gemäß

DWA-A 102.2 Anhang A der Belastungskategorie 1 zugeordnet werden, im Einzelnen in:

Dachflächen; Einzelbebauungen

→ Flächengruppe D

→ Kategorie 1

- Hofflächen, Garagenzufahrten, Fuß-, Rad- und Wohnwege

→ Flächengruppe VW1

→ Kategorie 1

- Verkehrsfläche (Wohnstraße, Gehweg)

→ Flächengruppe V1

→ Kategorie 1

Tabelle 3: Behandlungsbedürftigkeit von unterschiedlich belastetem Niederschlagswasser

Zielgewässer	Gering belastetes	Mäßig belastetes	Stark belastetes
	Niederschlagswasser	Niederschlagswasser	Niederschlagswasser
	(Kategorie I)	(Kategorie II)	(Kategorie III)
Oberflächen-	Einleitung grundsätzlich	Grundsätzlich geeignete technische Behandlung	
gewässer	ohne Behandlung möglich	erforderlich	
Grundwasser	Versickerung und gegebenenfalls Behandlung gemäß Arbeitsblatt DWA-A 138		

Alle aufgeführten Flächen werden über das geplante Rückhaltebecken in den Lugbach eingeleitet. Eine Einleitung ist gemäß DWA-A 102.2 Tabelle 3 für Flächen der Belastungskategorie 1 ohne Behandlung durchführbar.

- immissionbezogene Bewertung

a) Größe des oberirdischen Einzugsgebietes

Für den Standort der geplanten Einleitestelle betragen die Flächenwerte:

- A_{Eo} = 178,5 ha (Einzugsgebiet Lugbach)
- Aba = 0,338 ha (angeschlossene Fläche der Einleitung)

Prüfung:

$$\frac{A_{ba}}{A_{Fa}} = \frac{0,338 \ ha}{178,5 \ ha} = 0,0019 \ll 0,01$$

- → Keine kritische Gewässerbelastung.
- b) Frei zu haltende Gewässer und Gewässerabschnitte
 - Quelle ca. 1000m oberhalb der geplanten Einleitestelle → 1000m > 300m
 - Kein Temporärgewässer
 - Kein ökologisch sehr guter Zustand
 - Kein Torfbach / Kein Stillgewässer
 - → Keine kritische Gewässerbelastung.
- c) Hydraulische Belastung
 - kumulierter Einleitungsabfluss Q_{E1} = 2,81 l/s
 - mittlerer Niedrigwasserabfluss (MNQ)
 gemäß hydrologischem Atlas (Bundesanstalt für Gewässerkunde) wird die
 Niedrigwasserabflussspende im Bereich Lugbach mit 3-4 l/(s·km²) angegeben:

Prüfung:

$$Q_{MNQ} = 3 - 4 \cdot A_{Eo} > Q_{E1}$$

 $Q_{MNQ} = 3 - 4 \cdot 1,785 \text{ km}^2 = 5,4 - 7,1 \text{ l/s} > Q_{E1} = 2,81 \text{ l/s}$

→ Keine kritische Gewässerbelastung.

d) Stoffliche Belastung

Nach A102.3 bedarf es grundsätzlich einer näheren Abklärung bei einer Einleitung in:

- aufgestaute oder sehr langsam fließende Gewässer
- Gewässer, die der Rohwassergewinnung dienen
- Badegewässer
- Gewässer mit einer behördlichen Überwachung
- Gewässer mit gefährdeten Muschelarten
- Laichgewässer für Großsalmoniden

Die aufgeführten Einleitesituationen sind für die geplante Einleitung nicht zutreffend.

Eine Relevanz der Ammoniakkonzentration, der Belastung des Sauerstoffgehalts und Feststoffbelastung kann ausgeschlossen werden, da die gepl. anzuschließenden Flächen der Belastungskategorie 1 zuzuordnen sind (siehe auch emissionsbezogene Bewertung) und das Verhältnis der angeschlossenen befestigten Fläche A_{ba} zum oberirdischen Gewässereinzugsgebiet $A_{Eo} < 0.05$, bzw. 0.15 ist (siehe auch Punkt 4a).

- → Keine kritische Gewässerbelastung.
- → Die Relevanzprüfung kommt zu dem Ergebnis, dass eine rechnerische Nachweisführung <u>nicht erforderlich</u> wird.

7. Hydraulische Berechnung Ableitungssystem

a) Grundsätzliches

Nach ATV-A 110 ist für "steile" Abwasserstränge zu prüfen, ob eine Bemessung als Steilstrecke durchzuführen ist (Bousinesq-Zahl: Bou > 6). Die Überprüfung (siehe tabellarische Aufstellung, Anlage 1) kommt zu dem Ergebnis, dass die geplanten Kanalstränge mit 5,8 und 5,9 nur knapp aber unterhalb des Grenzwertes liegen. Demnach ist eine weitergehende Bemessung als Steilstrecke nicht erforderlich. Für Leitungsabschnitte mit einem Leitungsgefälle > 6% bzw. > 60‰ ist eine Energieumwandlung am jeweiligen unteren Leitungsabschnitt vorzusehen.

b) Bemessung Regenwasserkanal

Die maßgebende Regendauer wird, in Abhängigkeit zur mittleren Geländeneigung im Baugebiet, mit 10 min (anstatt 15 min) angesetzt. Die Regenspende ergibt sich damit zu $r_{10,T=2} = 191,7 \text{ l/s} \cdot \text{ha}$

- max. Auslastung Regenwasserkanal; Abschnitt NBG bis Felsenstraße: angeschlossene Flächen nur NBG → A_{ba} = 0,257 ha
 Haltungen RW14 RW07; DN 300; mind. Gefälle 5‰ Q_v = 69,1 l/s
 Q_T = A_{ba} · r_{10,T=2} = 0,257 · 191,7 = 49,3 l/s → Auslastung ca. 71%
- max. Auslastung Regenwasserkanal; Felsenstraße RHB: angeschlossene Flächen NBG + EW06 + Felsenstraße → A_{ba} = 0,338 ha Haltungen RW07 RHB; DN 300; mind. Gefälle 13‰ Q_v = 112 l/s Q_T = A_{ba} · r_{10,T=2} = 0,338 · 191,7 = 64,8 l/s → Auslastung ca. 58 %

- max. Auslastung Regenwasserkanal; Abschnitt zur Waldstraße (Vergrößerung der Rohrnennweite von DN 250 auf DN 300): angeschlossene Flächen → A_{ba} = 0,060 ha Haltungen RW17 – 580M018; DN 300; mind. Gefälle 5‰ – Q_v = 69,1l/s Q_T = A_{ba} · r_{10,T=2} =0,060 · 191,7 = 11,5 l/s → Auslastung ca. 17%

8. Schieberstellung am Mönchbauwerk

Im Genehmigungsantrag lag ein Umrechnungsfehler bei der Querschnittfläche vor.

$$A = \frac{Q_{Dr}}{cx + \sqrt{2g + h_s}} = \frac{0,00281}{0,62 + \sqrt{2g + 0,50}} = \frac{0,00281}{0,62 + 3,132} = 0,001447 \text{m}^2 = 14,47 \text{ cm}^2$$

$$A_{DN200} = d^2 * p / 4 = 314 cm^2$$

→Das erforderliche Öffnungsmaß für den Drosselschieber DN 200 beträgt 1,84 cm.

9. Ausgleich der Wasserführung

geringfügige Anpassung der Berechnung:

Berücksichtigung des Abflussbeiwert des bestehenden Geländes

$$V_{erf.} = F_n \cdot A_{ba} = F_n \cdot (A_{ba,NBG} - A_{ba,Gelände}) = 467,96 \text{ m}^3/\text{ha} \cdot (0,299-0,023) \text{ ha} = 467,96 \cdot 0,276$$

 $V_{erf.} = 129,15 \text{ m}^3$

Das mind. erforderliche Ausgleichsvolumen wird durch das geplante Beckenvolumen von $V_{gepl.} = 158 \text{ m}^3$ abgedeckt.

10. Ergänzung der Detailzeichnungen

Die geplante Einleitestelle aus dem geplanten Rückhaltebecken in den Lugbach wurde, um die zusätzlichen Maßnahmen (Wasserbaupflaster) im Lageplan V.2 ergänzt.

Der Entwurf wurde um den Plan V.6 Mönchbauwerk ergänzt.

Anlagen:

- 1 Überprüfung Steilstrecken nach DWA-A 110
- 2 Pläne der Genehmigungsplanung V.1 V.5 (sind im Entwurf auszutauschen) V.6 (ist im Entwurf zu ergänzen)

Dahn, im Dezember 2024

Ingenieurbüro Dilger GmbH

Beratende Ingenieure für Bauwesen